Answer:
The correct answer is cation. See the explanation below, please.
Explanation:
An atom with a net charge, either positive or negative, is called an ion. In the event that an atom loses an electron (or more), that is, it will have more protons than electrons, and its net charge will be positive, it will be called cation. In the opposite direction, if an atom gains electrons, it will have a negative net charge, called anion.
Answer: 7.79 grams of ethanol were put into the beaker.
Explanation:
To calculate the mass of ethanol, we use the equation:

Density of ethanol = 0.779 g/mL
Volume of water = 10.00 mL
Putting values in above equation, we get:

Thus 7.79 grams of ethanol were put into the beaker.
Answer:
https://www.chegg.com/homework-help/questions-and-answers/1-10-points-solution-15-percent-mass-kcl-benzene-new-boiling-point--901-c-b-921-c-c-821-c--q63751186
Explanation: Thats your answer
Answer:
ACTIVITY 1
Sample 1 has a stronger taste of lemon, and is more sour.
Sample 2 has a sweeter taste, my guess is because there's more sugar:lemon juice ratio.
<u>Answer:</u> The mass of second isotope of indium is 114.904 amu
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
.....(1)
Let the mass of isotope 2 of indium be 'x'
Mass of isotope 1 = 112.904 amu
Percentage abundance of isotope 1 = 4.28 %
Fractional abundance of isotope 1 = 0.0428
Mass of isotope 2 = x amu
Percentage abundance of isotope 2 = [100 - 4.28] = 95.72 %
Fractional abundance of isotope 2 = 0.9572
Average atomic mass of indium = 114.818 amu
Putting values in equation 1, we get:
![114.818=[(112.904\times 0.0428)+(x\times 0.9572)]\\\\x=114.904amu](https://tex.z-dn.net/?f=114.818%3D%5B%28112.904%5Ctimes%200.0428%29%2B%28x%5Ctimes%200.9572%29%5D%5C%5C%5C%5Cx%3D114.904amu)
Hence, the mass of second isotope of indium is 114.904 amu