Answer:
The empirical formula for C12 H24 O6 is C2 H4 O.
Answer:
d. 1600 calories
Explanation:
The heat of fusion of water, L, is the amount of heat per gram required to melt the ice to water, a process which takes place at a constant temperature of 0 °C. The specific heat of water, c, is the amount of heat required to change the temperature of 1 gram of water by 1 degree Celsius.
We will convert the units of c from Jg⁻¹°C⁻¹ to cal·g⁻¹°C⁻¹ since the answers are provided in calories. The conversion factor is 4.18 J/cal.
(4.18 Jg⁻¹°C⁻¹)(cal/4.18J) = 1 cal·g⁻¹°C⁻¹
First we calculate the heat required to melt the ice, where M is the mass:
Q = ML = (15 g)(80 cal/g) = 1200 cal
Then, we calculate the heat required to raise the temperature of water from 0 °C to 25 °C.
Q = mcΔt = (15 g)(1 cal·g⁻¹°C⁻¹)(25 °C - 0 °C) = 380 cal
The answer is rounded so that there are two significant figures
The total heat required for this process is (1200 cal + 380 cal) = 1580 cal
The rounded answer is 1600 calories.
Answer:
Compound X has a molar mass of 316.25 g*mol^-1 and the following composition:
element & mass %
phosphorus & 39.18%
sulfur & 60.82%
Write the molecular formula of X.
Explanation:
The given molecule of phosphorus and sulfur has molar mass --- 316.25 g.
Empirical formula calculation:
element: phosphorus sulfur
co9mposition: 39.185% 60.82%
divide with
atomic mass: 39.185/31.0 g/mol 60.82/32.0g/mol
=1.26mol 1.90mol
smallest mole ratio: 1.26mol/1.26mol =1 1.90mol/1.26 mol =1.50
multiply with 2: 2 3
Hence, the empirical formula is:
P2S3.
Mass of empirical formula is:
158.0g/mol
Given, molecule has molar mass --- 316.25 g/mol
Hence, the ratio is:
316.25g/mol/158.0 =2
Hence, the molecular formula of the compound is :
2 x (P2S3)
=
Answer:
1. true
2. false
3. true
4. true
Explanation:
I believe these are the answers, I'm just not sure for #3
Answer:
I believe it is "Arsenenate"