Answer: polar molecule.
Explanation:
The boiling point is the temperature at which the vapor pressure of a liquid equals the external pressure surrounding the liquid. The boiling point is dependent on the type of forces present.
Iodine monochloride (ICl) is a polar molecule due to the difference in electronegativities of iodine and chlorine. Thus the molecules are bonded by strong dipole dipole forces. Thus a higher temperature is needed to generate enough vapor pressure.
Bromine
is a non polar molecule as there is no electronegativity difference between two bromine atoms. The molecules are bonded by weak vanderwaal forces and thus has low boiling point.
a thin solid glass rod that is used in chemistry to combine substances. A stirring rod often has rounded ends and is about the length of a long straw.
<h3>What use serves the stirring rod?</h3>
A crucial component of lab apparatus for mixing chemicals and liquids for reactions is a long, thin stirring rod. Stirring rods are made of solid plastic, glass, or steel and are non-abrasive, chemically inert, and chemically resistant.
<h3>What is the name of the glass stirring rod?</h3>
Glass rod, also known as a stirring rod, stir rod, or solid glass rod, is frequently made of quartz and borosilicate glass. Its diameter and length can be modified to meet your needs.
<h3>Does filtration employ stirring rods?</h3>
When the liquid transfer procedure is paused, use a stirring rod to direct the liquid flow into the funnel and stop small amounts of liquid from dribbling down the beaker's outside.
learn more about stirring rod here
<u>brainly.com/question/9971891</u>
#SPJ4
Answer:
Total pressure at equilibrium is 0.2798atm.
Explanation:
For the reaction:
H₂S(g) ⇄ H₂(g) + S(g)
Kp is defined as:

If initial pressure of H₂S is 0.150 atm, equilibrium pressures are:
H₂S(g): 0.150atm - x
H₂(g): x
S(g): x
Replacing in Kp:

X² = 0.1251 - 0.834X
X² + 0.834X - 0.1251 = 0
Solving for X:
X = -0.964 → False solution: There is no negative pressures
X = 0.1298
Thus, pressures are:
H₂S(g): 0.150atm - 0.1298atm = <em>0.0202atm</em>
H₂(g): <em>0.1298atm</em>
S(g): <em>0.1298atm</em>
Thus, total pressure in the container at equilibrium is:
0.0202atm + 0.1298atm + 0.1298atm = <em>0.2798atm</em>