Answer:
296 L
Explanation:
We will need a balanced equation with moles, so let's gather all the information in one place.
4Al + 3O₂ ⟶ 2Al₂O₃
n/mol: 17.4
1. Moles of O₂

2. Volume of O₂
You haven't given the conditions at which the volume is measured, so I assume it is at STP (0 °C and 1 bar).
At STP the molar volume of a gas is 22.71 L.
Answer: 0.4 moles
Explanation:
Given that:
Volume of gas V = 11L
(since 1 liter = 1dm3
11L = 11dm3)
Temperature T = 25°C
Convert Celsius to Kelvin
(25°C + 273 = 298K)
Pressure P = 0.868 atm
Number of moles N = ?
Note that Molar gas constant R is a constant with a value of 0.00821 atm dm3 K-1 mol-1
Then, apply ideal gas equation
pV = nRT
0.868atm x 11dm3 = n x (0.00821 atm dm3 K-1 mol-1 x 298K)
9.548 atm dm3 = n x 24.47atm dm3mol-1
n = (9.548 atm dm3 / 24.47atm dm3 mol-1)
n = 0.4 moles
Thus, there are 0.4 moles of the gas.
Answer: Aluminum, Antimony, Arsenic, Bismuth, Carbon, Cadmium, Chromium, Cobalt, etc.
213034 torr is the osmotic pressure.
Explanation:
osmotic pressure is calculated by the formula:
osmotic pressure= iCrT
where i= no. of solute
c= concentration in mol/litre
R= Universal Gas constant
T = temp
It is given that solution is 3% which is 3gms in 100 ml.
let us calculate the concentration in moles/litre
3gm/100ml*1000ml/1L*1mol NaCl/55.84g NaCl
= 5.372 gm/litre
Putting the values in the formula, Temp in Kelvin 318.5K
osmotic pressure= 2*5.372*0.083 * 318.5 Gas constant 0.083
= 284.023 bar or 213018 torr. c= 5.372 moles/L
i=2 for NaCl
Well the width is 0.20 meters. Since there are a hundred centimeters in a meter, we just have to move the decimal point two times to the right to get a 20 centimeter width.