Answer:
<em>Its speed will be 280 m/s</em>
Explanation:
<u>Constant Acceleration Motion</u>
It's a type of motion in which the speed of an object changes by an equal amount in every equal period of time.
If a is the constant acceleration, vo the initial speed, vf the final speed, and t the time, vf can be calculated as:

The object accelerates from rest (vo=0) at a constant acceleration of
. The final speed at t=35 seconds is:


Its speed will be 280 m/s
To what i see, the answer is....
C.
Given what we know, despite not having the figure attached to the question, we can still confirm that the magnitude for the acceleration of the dancer will be zero.
<h3>Why is the dancer's acceleration equal to zero?</h3>
This has to do with how the question clarifies the speed of the dancer. Though it does not give us an exact value, we are told that the speed is constant. This is an indicator that the acceleration is zero because with any other value for acceleration the speed <u>cannot remain</u> constant.
Therefore, given that any value for acceleration will increase or decrease the speed of the dancer, but we are told that the dancer's speed is constant throughout the trip, we can confirm that the magnitude for the acceleration of the dancer is zero.
To learn more about acceleration visit;
brainly.com/question/12134554?referrer=searchResults
Answer:
0.06 Nm
Explanation:
mass of object, m = 3 kg
radius of gyration, k = 0.2 m
angular acceleration, α = 0.5 rad/s^2
Moment of inertia of the object

I = 3 x 0.2 x 0.2 = 0.12 kg m^2
The relaton between the torque and teh moment off inertia is
τ = I α
Wheree, τ is torque and α be the angular acceleration and I be the moemnt of inertia
τ = 0.12 x 0.5 = 0.06 Nm
V = m1 u1 - m2 u2 / m1
v = 0.01 * 500 - 2 * 1.4 / 0.01
v = 220 m/s