Answer:
v₀ = 280.6 m / s
Explanation:
we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy,
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression

½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[152 ×0.78² / (0.012 +0.109) ]
v = 27.65 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash

The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved

m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 27.83 (0.012 +0.109) /0.012
v₀ = 280.6 m / s
Answer:
V4=9.197v
Explanation:
Given:
V1= 18v ,V2= 12v ,r1=r5=58ohms ,r2=r6=124ohms , r3=47ohms ,r4= 125ohms
V4= I4R4 = V2/(R4 + R5)×R4
V4= 12×125 /(125 + 58)
V4=1500/183 =9.197v
The interaction between two like-charged objects is repulsive. ... Positively charged objects and neutral objects attract each other; and negatively charged objects and neutral objects attract each other.
Alaska- Subartic Climate
Portland, Oregon- Marine West Coast Climate
Key West, Florida- Tropical Savannah Climate