Answer:
165.726 g.
Explanation:
- For the balanced equation:
<em>Cr₂O₃ + 3H₂S → Cr₂S₃ + 3H₂O,</em>
It is clear that 1 mol of Cr₂O₃ and 3 mol of H₂S to produce 1 mol of Cr₂S₃ and 3 mol of H₂O.
- Firstly, we need to calculate the no. of moles of 324.8 g of chromium(III) sulphide:
no. of moles of Cr₂S₃ = mass/molar mass = (324.8 g)/(200.19 g/mol) = 1.62 mol.
- Now, we can find the "no. of grams" of H₂S are needed:
<u><em>Using cross multiplication:</em></u>
3 mol of H₂S produces → 1 mol of Cr₂S₃, from stichiometry.
??? mol of H₂S produces → 1.62 mol of Cr₂S₃.
∴ The no. of moles of H₂S are needed = (3 mol)(1.62 mol)/(1 mol) = 4.86 mol.
∴ The "no. of grams" of H₂S are needed = (no. of moles of H₂S)(molar mass of H₂S) = (4.86 mol)(34.1 g/mol) = 165.726 g.
Answer:
45.8 mL
Explanation:
If all variables are held constant, the new volume can be found using the Boyle's Law equation. The equation looks like this:
P₁V₁ = P₂V₂
In this equation, "P₁" and "V₁" represent the initial pressure and volume. "P₂" and "V₂" represent the final pressure and volume. You can find the new volume by plugging the given values into the equation and simplifying.
P₁ = 3.1 atm P₂ = 10.5 atm
V₁ = 155 mL V₂ = ? mL
P₁V₁ = P₂V₂ <----- Boyle's Law equation
(3.1 atm)(155 mL) = (10.5 atm)V₂ <----- Insert values
480.5 = (10.5 atm)V₂ <----- Multiply 3.1 and 155
45.8 = V₂ <----- Divide both sides by 10.5
On January 28, 1986, the NASA shuttle orbiter mission STS-51-L and the tenth flight of Space Shuttle Challenger (OV-99) broke apart 73 seconds into its flight, killing all seven crew members, which consisted of five NASA astronauts and two payload specialists.
Answer:
There’s a high need for energy storage and are very expensive. Renewable energy is also not always available because some need sun while others need wind.
Explanation:
<span>0.032000000 cg
Rounding off ........>
0.0320 cg
The last zero means the measurement is accurate to that digit
</span>