Answer:
a) 0.31 rad/s
b) 100 J
c) 6.67 W
Explanation:
(a) the force would generate a torque of:

According to Newton 2nd law, the angular acceleration would be

It starts from rest, then after 15s it would achieve a speed of

(b) The distance angle swept by it is:

Hence the work by the child

c) Average power to work per time unit

Answer:
<h2>2.35 N</h2>
Explanation:
The force acting on an object given it's mass and acceleration can be found by using the formula
force = mass × acceleration
From the question
force = 0.49 × 4.8 = 2.352
We have the final answer as
<h3>2.35 N</h3>
Hope this helps you
An applied force<span> is a </span>force<span> that is </span>applied<span> to an object by a person or another object.
An attractive force is a force of an attraction (where object are attracted by each other). Gravitation is an example of attractive force.
</span>Normal force<span> is the component, perpendicular to the surface (surface being a plane) of contact.
</span><span>The softball experiences an applied force as a result of Amy’s throw. As the ball moves, it experiences attractive force from the air it passes through. It also experiences a downward pull because of the normal force.
Solution A.</span>
Answer:
The velocity of the Mr. miles is 17.14 m/s.
Explanation:
It is given that,
Mr. Miles zips down a water-slide starting at 15 m vertical distance up the scaffolding, h = 15 m
We need to find the velocity of the Mr. Miles at the bottom of the slide. It is a case of conservation of energy which states that the total energy of the system remains conserved. Let v is the velocity of the Mr. miles. So,

g is the acceleration due to gravity

v = 17.14 m/s
So, the velocity of the Mr. miles is 17.14 m/s. Hence, this is the required solution.