Troposphere, stratosphere, mesosphere, thermosphere, exosphere
Wavelength is the distance between 2 adjacent points in a wave
we can use the following equation to find the wavelength of a sound wave
wavelength = speed / frequency
frequency is the number of waves passing a point in 1 second
substituting the values in the equation
wavelength = 343 m/s / 686 Hz
wavelength = 0.5 m
wavelength of the wave is 0.5 m
Answer:
a. Wavelength = λ = 20 cm
b. Next distance of maximum intensity will be 40 cm
Explanation:
a. The distance between the two speakers is 20cm. SInce the intensity is maximum which refers that we have constructive interference and the phase difference must be an even multiple of π and equivalent path difference is nλ.
Now when distance increases upto 30 cm between the speakers, the sound intensity becomes zero which means that there is destructive interference and equivalent path is now increased from nλ to nλ + λ/2.
This we get the equation:
(nλ + λ/2) - nλ = 30-20
λ/2 = 10
λ = 20 cm
b. at what distance, sound intensity will be maximum again.
For next point calculation for maximum sound intensity, the path difference must be increased (n+1) λ. The distance must increase by λ/2 from the point of zero intensity.
= 30 + λ/2
= 30 + 20/2
=30+10
=40 cm
The four strokes in order are the intake stroke, the compression stroke, the power stroke, and the exhaust stroke. Fuel is ignited during the power stroke.