If the endpoints of DE where D(-3, y) and E(x, 6) with the midpoint M(4, 2), the length of DE is 16.12 units
The formula for calculating the midpoint is expressed as;

For the x-coordinate points:
X = -3+x/2
4 * 2 = -3 + x
8 = -3 + x
x = 8 + 3
x = 11
Get the value of y;
2 = y+6/2
y+6 = 2 * 2
y + 6 = 4
y = 4 - 6
y = -2
Hence the coordinates of D and E are D(-3, -2) and E(11, 6)

Hence the length of DE is 16.12 units
Learn more here; brainly.com/question/22624745
The sum of the volume of its part
Answer:
a) shown
b) h = [sqrt(17) - (5/2)t]²
c) t = 2sqrt(17)/5 seconds
Step-by-step explanation:
V = pi × r² × h
V = pi × 5² × h
V = 25pi × h
a) dV/dt = dV/dh × dh/dt
-5pi × sqrt(h) = 25pi × dh/dt
dh/dt = -sqrt(h)/5
b) 1/sqrt(h) .dh = -5. dt
2sqrt(h) = -5t + c
t = 0, h = 17
2sqrt(17) = 0 + c
c = 2sqrt(17)
2sqrt(h) = -5t + 2sqrt(17)
sqrt(h) = [2sqrt(17) - 5t] ÷ 2
sqrt(h) = sqrt(17) - (5/2)t
Square both sides
h = [sqrt(17) - (5/2)t]²
c) empty: h = 0
0 = [sqrt(17) - (5/2)t]²
sqrt(17) - (5/2)t = 0
(5/2)t = sqrt(17)
t = 2sqrt(17)/5
t = 1.64924225 seconds
sqrt: square root
9514 1404 393
Answer:
12.0 cm
Step-by-step explanation:
The Pythagorean theorem applies:
(12 cm)² +b² = (17 cm)²
b² = (289 -144) cm² = 145 cm²
b = √145 cm ≈ 12.04 cm
b ≈ 12.0 cm . . . . rounded to 1 decimal place