Their velocity afterwards is 2.88 m/s east
Explanation:
We can solve this problem by using the law of conservation of momentum. In fact, for an isolated system (= no external force), the total momentum must be conserved before and after the collision. So we can write:
where: in this case:
is the mass of the first player
is the initial velocity of the first player (choosing east as positive direction)
is the mass of the second player
is the initial velocity of the second player
is their combined velocity afterwards
Solving for v, we find:
And the sign is positive, so the direction is east.
Learn more about momentum here:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
it's B. circuit a and b are series circuit while c is parallel
Answer:
320 N/m
Explanation:
From Hooke's law, we deduce that
F=kx where F is applied force, k is spring constant and x is extension or compression of spring
Making k the subject of formula then

Conversion
1m equals to 100cm
Xm equals 25 cm
25/100=0.25 m
Substituting 80 N for F and 0.25m for x then

Therefore, the spring constant is equal to 320 N/m
Answer:
Explanation:
Time taken by stone to cover horizontal distance
where t is time, h is height of whirling the stone in horizontal circle, g is gravitational constant, Substituting h for 2.1 m and g for 9.81
= 0.654654 seconds
t=0.65 s
Velocity, v= distance/time
v=10/0.65= 15.27525 m/s
v=15.3 m/s
where r is radius of circle, substituting r with 1.1m
Therefore, centripetal acceleration is