Answer:
0.28802
2.57162 W
14.28 W
53.55 W
6.07142 W
Explanation:
R = 280Ω
L = 100 mH
C = 0.800 μF
V = 50 V
ω = 10500rad/s
For RLC circuit impedance is given by

Power factor is given by

The power factor is 0.28802
The average power to the circuit is given by

The average power to the circuit is 2.57162 W
Power to resistor

Power to resistor is 14.28 W
Power to inductor

Power to the inductor is 53.55 W
Power to the capacitor

The power to the capacitor is 6.07142 W
Answer:
The average force on ball by the golf club is 340 N.
Explanation:
Given that,
Mass of the golf ball, m = 0.03 kg
Initial speed of the ball, u = 0
Final speed of the ball, v = 34 m/s
Time of contact, 
We need to find the average force on ball by the golf club. We know that the rate of change of momentum is equal to the net external force applied such that :

So, the average force on ball by the golf club is 340 N.
u= 215 km/hr = 215 * 1000/ 3600 = aprx 60m/s
v=0
t=2.7sec
v= u - at
u= at
60/2.7 = 22.23 m/s^2
Hope it helps
Answer:
M.A = load/ effort
1200N/400N
= 3
velocity ratio= radius of wheel/radius of Axle
40cm/10cm
=4
efficiency= 3/4*100
75%
Answer:
0.191 s
Explanation:
The distance from the center of the cube to the upper corner is r = d/√2.
When the cube is rotated an angle θ, the spring is stretched a distance of r sin θ. The new vertical distance from the center to the corner is r cos θ.
Sum of the torques:
∑τ = Iα
Fr cos θ = Iα
(k r sin θ) r cos θ = Iα
kr² sin θ cos θ = Iα
k (d²/2) sin θ cos θ = Iα
For a cube rotating about its center, I = ⅙ md².
k (d²/2) sin θ cos θ = ⅙ md² α
3k sin θ cos θ = mα
3/2 k sin(2θ) = mα
For small values of θ, sin θ ≈ θ.
3/2 k (2θ) = mα
α = (3k/m) θ
d²θ/dt² = (3k/m) θ
For this differential equation, the coefficient is the square of the angular frequency, ω².
ω² = 3k/m
ω = √(3k/m)
The period is:
T = 2π / ω
T = 2π √(m/(3k))
Given m = 2.50 kg and k = 900 N/m:
T = 2π √(2.50 kg / (3 × 900 N/m))
T = 0.191 s
The period is 0.191 seconds.