I believe you mean 6.02*10^7 but you want to shift the decimal 7 times to the right which would be 60200000 (:
Answer:
7.5s
Explanation:
Given parameters:
Velocity = 30m/s
Deceleration = 4m/s²
Unknown:
Time it takes for the car to come to complete rest = ?
Solution:
To solve this problem, we use the kinematics expression below:
v = u + at
Since this is a deceleration
v = u - at
v is the final velocity
u is the initial velocity
a is the acceleration
t is the time taken
v - u = -at
0 - 30 = -4 x t
-30 = -4t
t = 7.5s
Answer:
Explanation:
Initially no of atoms of A = N₀(A)
Initially no of atoms of B = N₀(B)
5 X N₀(A) = N₀(B)
N = N₀ 
N is no of atoms after time t , λ is decay constant and t is time .
For A
N(A) = N(A)₀ 
For B
N(B) = N(B)₀ 
N(A) = N(B) , for t = 2 h
N(A)₀
= N(B)₀ 
N(A)₀
= 5 x N₀(A) 
= 5 
= 5 
half life = .693 / λ
For A
.77 = .693 / λ₁
λ₁ = .9 h⁻¹
= 5 
Putting t = 2 h , λ₁ = .9 h⁻¹
= 5 
= 30.25
2 x λ₂ = 3.41
λ₂ = 1.7047
Half life of B = .693 / 1.7047
= .4065 hours .
= .41 hours .
Answer:
It depends on the model but these are the watts of each motor
Explanation:
Un motor: 258 HP (262 CV) Dual motor: 154 kW (209 CV) y 197 kW (268 CV). Performance: 154 kW (209 CV) y 225 kW (306 CV).
The equations that can be used to solve for the force of friction exerted on the block by the surface is F- f = mv² / d
The constant force F is exerted on the block of mass and it accelerates with a speed, v and covering a distance of d in the direction of the force. The force of friction is an opposing force to the applied force.
Therefore,
using Newtons third law
F - f = ma
a = v/t
t = d/v
F - f = m × v / t
F- f = m × 
F- f = m × v²/d
Therefore,
F- f = mv² / d
read more: brainly.com/question/18805877?referrer=searchResults