According to another source this is what I got
<span>0.735 J ( Ep-potential energy, m-mass,g-gravitational acceleration = 9.81m/s², h-height; Ep = m * g * h; Ep = 0.0300 kg * 9.81 m/s² * 2.5 m )
</span>Hope it helps
Answer:
<u><em>The truck was moving 16.5 m/s during the time it took to stop, which was 3 seconds. </em></u>
- <u><em>Initial velocity = 33 m/s</em></u>
- <u><em>Final velocity = 0 m/s</em></u>
- <u><em>Average velocity = (33 + 0) / 2 m/s = 16.5 m/s</em></u>
Explanation:
- <u><em>First, how long does it take the truck to come to a complete stop?</em></u>
- <u><em>( 33 m/s ) / ( 11 m / s^2 ) = 3 seconds</em></u>
- <u><em>Then we can look at the average velocity between when the truck started decelerating and when it came to a complete stop. Because the deceleration is constant (always 11m/s^2) we can use this trick.</em></u>
Answer:
When you are performing spike it's most effective to strike the ball from the right or left side at a sharp downward angle. Whether you are spiking the ball from the right or left front position, position yourself behind the 10-foot line (attack line), which is the line that is about four steps away from the net.
Answer:
Option C. 30 m
Explanation:
From the graph given in the question above,
At t = 1 s,
The displacement of the car is 10 m
At t = 4 s
The displacement of the car is 40 m
Thus, we can simply calculate the displacement of the car between t = 1 and t = 4 by calculating the difference in the displacement at the various time. This is illustrated below:
Displacement at t = 1 s (d1) = 10 m
Displacement at t= 4 s (d2) = 40
Displacement between t = 1 and t = 4 (ΔD) =?
ΔD = d2 – d1
ΔD = 40 – 10
ΔD = 30 m.
Therefore, the displacement of the car between t = 1 and t = 4 is 30 m.
Explanation:
Given that,
The slope of the ramp, 
Mass of the box, m = 60 kg
(a) Distance covered by the truck up the slope, d = 300 m
Initially the truck moves with a constant velocity. We know that the net work done on the box is equal to 0 as per work energy theorem as :

u and v are the initial and the final velocity of the truck
(b) The work done on the box by the force of gravity is given by :

Here, 


W = -24550.13 J
(c) What is the work done on the box by the normal force is equal to 0 as the angle between the force and the displacement is 90 degrees.
(d) The work done by friction is given by :


Hence, this is the required solution.