To solve this problem we will apply the concepts related to Ohm's law and Electric Power. By Ohm's law we know that resistance is equivalent to,

Here,
V = Voltage
I = Current
While the power is equivalent to the product between the current and the voltage, thus solving for the current we have,


Applying Ohm's law


Therefore the equivalent resistance of the light string is 
Answer:
1. a 
b 
c 
2. 
Explanation:
a). The work done by the tension is:




b). The work done potential of gravity




c). The work done by the normal force



2. The increase in thermal energy is:





Place the next vector with its tail at the previous vector's head. ... To subtract vectors, proceed as if adding the two vectors, but flip the vector to be subtracted across the axes and then join it tail to head as if adding. Adding or subtracting any number of vectors yields a resultant vector.
Explanation:
Answer:
Y = 4.775 x 10⁹ Pa = 4.775 GPa
Explanation:
First, we calculate the stress on the rod:

Now, we calculate the strain:

Now, we will calculate the Young's Modulus (Y):

<u>Y = 4.775 x 10⁹ Pa = 4.775 GPa</u>