Low pressure has a bit less of a function than high pressure, high pressure is more useful in certain terms
According to Newton's second law, the force applied to an object is equal to the product between the mass of the object and its acceleration:

where F is the magnitude of the force, m is the mass of the object and a its acceleration.
In this problem, the object is the insect, with mass

. The acceleration of the insect is

, therefore we can calculate the force exerted by the car on the insect:

How do we find the force exerted by the insect on the car?
According to Newton's third law (known as action-reaction law), when an object A exerts a force on an object B, object B also exerts a force equal and opposite on object A. Therefore, the force exerted by the insect on the car is equal to the force exerted by the car on the object, so it is 0.01 N.
For the work-energy theorem, the work needed to stop the bus is equal to its variation of kinetic energy:

where
W is the work
Kf is the final kinetic energy of the bus
Ki is the initial kinetic energy of the bus
Since the bus comes at rest, its final kinetic energy is zero:

, so the work done by the brakes to stop the bus is

And the work done is negative, because the force applied by the brake is in the opposite direction to that of the bus motion.
Answer:
A) microwaves and ultraviolet
Explanation:
this is the spectrum in order:
radio waves
microwaves
infra red
visible light
ultraviolet
X rays
gamma rays
Answer:
2.49 * 10^(-4) m
Explanation:
Parameters given:
Frequency, f = 4.257 MHz = 4.257 * 10^6 Hz
Speed of sound in the body, v = 1.06 km/ = 1060 m/s
The speed of a wave is given as the product of its wavelength and frequency:
v = λf
Where λ = wavelength
This implies that:
λ = v/f
λ = (1060) / (4.257 * 10^6)
λ = 2.49 * 10^(-4) m
The wavelength of the sound in the body is 2.49 * 10^(-4) m.