Assuming it's a perfect gas, we have PV=nRT hence if T goes down, V goes down up. The volume will decrease.
Answer:
C
Explanation:
looking at a periodic table X is fluorine and Y is potassium
Fluorine is in group 7 and forms a 1- charge (which gains electrons) and potassium is in group 1 and forms a 1+ charge (which loses electrons)
Fluorine (X) has an electronic structure of 2,7 and needs to gain an electron from Potassium (Y) to have a full outer shell and potassium has an electronic structure of 2,8,8,1 so needs to lose an electron to have a full outer shell as well. This means that the electron that potassium (Y) has lost is given away to fluorine (X), so both elements become stable.
This is known as ionic bonding where metals (like potassium) lose electrons and non-metals (like fluorine) gain electrons to become more stable, forming ions
Any further clarification let me know
Answer:
c. Compound 2 is more acidic because its conjugate base is more resonance stabilized
Explanation:
You haven't told us what the compounds are, so let's assume that the formula of Compound 1 is HCOCH₂OH and that of Compound 2 is CH₃COOH.
The conjugate base of 2 is CH₃COO⁻. It has two important resonance contributors, and the negative charge is evenly distributed between the two oxygen atoms.
CH₃COOH + H₂O ⇌ CH₃COO⁻ + H₃O⁺
The stabilization of the conjugate base pulls the position of equilibrium to the right, so the compound is more acidic than 1.
If it’s hydraulic turbine then it’s potential and kinetic energy and if it’s a thermal process then heat energy from the fuel burnt runs the turbine