Given:
n = 12 moles of oxygen
T = 273 K, temperature
p = 75 kPa, pressure
Use the ideal gas law, given by

where
V = volume
R = 8.3145 J/(mol-K), the gas constant
Therefore,

Answer: 0.363 m³
Answer:
1) Oil is less dense than water so when oil spills, it spreads across the entire water surface.
2) The oil spreads very quickly with lighter oils such as gasoline.
3) Wind, Currents, and Warm Temperatures will cause Oil to spread quicker.
Answer:
B. decay of dead marine organisms
Explanation:
When the temperature is low, carbon dioxide is captured by the oceans, and when the temperature is high, it is released by the oceans into the atmosphere. At sea, carbon dioxide feeds phytoplankton.
Most of the carbon dioxide consumed by plant plankton (phytoplankton) returns to the atmosphere when this phytoplankton dies or is consumed, but a portion is deposited in the ocean floor sediments when these small particles sink. This process is called a "biological bomb" because carbon dioxide is transported from the atmosphere to the ocean floor.
Answer:
I2; I–I bond length = 266 pm
Explanation:
Bond length is inversely related to bond strength. The longer the bond length, the weaker the bond. The shorter the bond length the stronger the bond. A large bond distance implies that there is poor interaction between the atoms involved in the bond. A long bond distance or bond length may even indicate the absence of covalent interaction between the atoms involved.
The combustion reaction of octane is as follow,
C₈H₁₈ + 25/2 O₂ → 8 CO₂ + 9 H₂O
According to balance equation,
8 moles of CO₂ are released when = 114.23 g (1 mole) Octane is reacted
So,
6.20 moles of CO₂ will release when = X g of Octane is reacted
Solving for X,
X = (114.23 g × 6.20 mol) ÷ 8 mol
X = 88.52 g of Octane
Result:
88.52 g of Octane is needed to release 6.20 mol CO₂.