If the liquid is at or above its flash point, the flame spread rate is fast, and the entire pool is engulfed within seconds. ... As the liquid temperature decreases, flame radiation must both heat the liquid to the flash point temperature and supply the heat of vaporization.
The given question is incomplete. The complete question is:
Suppose a current of 0.920 A is passed through an electroplating cell with an aqueous solution of agno3 in the cathode compartment for 47.0 seconds. Calculate the mass of pure silver deposited on a metal object made into the cathode of the cell.
Answer: 0.0484 g
Explanation:
where Q= quantity of electricity in coloumbs
I = current in amperes = 0.920 A
t= time in seconds = 47.0 sec

96500 Coloumb of electricity electrolyzes 1 mole of Ag
43.24 C of electricity deposits =
of Ag
Thus the mass of pure silver deposited on a metal object made into the cathode of the cell is 0.0484 g
The balanced chemical reaction describing this decomposition is as follows:
<span>4c3h5n3o9 .............> 6N2 + 12CO2 +10H2O + O2
From the periodic table:
mass of oxygen = 16 grams
mass of nitrogen = 14 grams
mass of hydrogen = 1 gram
mass of carbon = 12 grams
Therefore:
mass of </span><span>C3H5N3O9 = 3(12) + 5(1) + 3(14) + 9(16) = 227 grams
mass of O2 = 2(16) = 32 grams
From the balanced chemical equation:
4(227) = 908 grams of </span>C3H5N3O9 produce 32 grams of O2. Therefore, to know the amount of oxygen produced from 4.5*10^2 grams <span>C3H5N3O9, all we need to do is cross multiplication as follows:
amount of oxygen = (4.5*10^2*32) / (908) = 15.859 grams</span>
Gravity is the force that draws water back to the earth in the forms of rain, sleet and, snow.
Answer:
the answer is c kept in blue and with light