If you mean S is the distance then it is true
Velocity = Distance / time
A "heating curve" is a graph that shows the temperature of the substance
against the amount of heat you put into it.
For most of the graph, as you'd expect, the temperature goes up as you
add heat, and it goes down as you take heat away. BUT ... While the
substance is changing state, its temperature doesn't change even though
you're putting heat in or taking heat out.
So that part of the graph is a horizontal line.
To solve this problem, we will apply the concepts related to Faraday's law that describes the behavior of the emf induced in the loop. Remember that this can be expressed as the product between the number of loops and the variation of the magnetic flux per unit of time. At the same time the magnetic flux through a loop of cross sectional area is,

Here,
= Angle between areal vector and magnetic field direction.
According to Faraday's law, induced emf in the loop is,





At time
, Induced emf is,


Therefore the magnitude of the induced emf is 10.9V
Answer:
The gravitational acceleration of the planet is, g = 8 m/s²
Explanation:
Given data,
The distance the object falls, s = 144 m
The time taken by the object is, t = 6 s
Using the III equations of motion
S = ut + ½ gt²
∴ g = 2S/t²
Substituting the given values,
g = 2 x 144 /6²
= 8 m/s²
Hence, the gravitational acceleration of the planet is, g = 8 m/s²