Given:
The magnitude of each charge is q1 = q2 = 1 C
The distance between them is r = 1 m
To find the force when distance is doubled.
Explanation:
The new distance is

The force can be calculated by the formula

Here, k is the constant whose value is

On substituting the values, the force will be

Hi hi I hope you know that you have a great time jaha
Answer:
Heya how have you been doing