The gravitional potential energy, relative to the bottom of the giant drop, in joules, is (9800) times (the height of the drop in meters).
That's the PE of the empty car only, not counting any hapless screaming souls who may be trapped in it at that moment.
Answer:
Death, Destruction, Loss of home
Answer:
True
Explanation:
Side affects can range from
Problems with periods to Loss of breasts
When the ball starts its motion from the ground, its potential energy is zero, so all its mechanical energy is kinetic energy of the motion:

where m is the ball's mass and v its initial velocity, 20 m/s.
When the ball reaches its maximum height, h, its velocity is zero, so its mechanical energy is just gravitational potential energy:

for the law of conservation of energy, the initial mechanical energy must be equal to the final mechanical energy, so we have

From which we find the maximum height of the ball:

Therefore, the answer is
yes, the ball will reach the top of the tree.
Before going to answer this question first we have to understand reflection and laws of reflection.
Reflection is the optical phenomenon in which light will bounce back to the same medium from which it had originated .
Whenever a light ray will incident on a mirror or any reflecting surface, it will be reflected. The ray which falls on the reflecting surface is called incident ray and the ray which is reflected is called reflected ray.
Let us consider a normal to the point of incidence.The angle made by incident ray with the normal is called angle of incidence.Let it be denoted as[ i ]
The angle made by the reflected ray with the normal is called angle of incidence.Let it be denoted as [r]
There are two types of reflection.One is called regular and other one is called as irregular.The laws of reflection is valid for both the types of reflection.
There are two laws of reflection.
FIRST LAW -It states that the incident ray,reflected ray and the normal to the point of incidence,all lie in one plane.
SECOND LAW- It states that that the angle of incidence is equal to the angle of reflection irrespective of the type of reflection.i.e i =r
Hence the correct answer will be angle of reflection.