Explanation:
Specific heat of a substance is defined as the amount of heat that is required to raise the temperature of one mole or mass of a substance by 1°C.
The total amount of heat of a substance is the amount of heat required to raise the temperature of the given mass of the substance by 1°C.
Specific heat is an intensive property and does not depend on the amount of matter that is present within a substance.
Total amount of heat is an extensive property of matter and it is predicated on the amount of matter present.
What question are you asking?
The answer to your question is A. Have a great day
Answer:
All of the above is the correct answer!!!
Explanation:
mark me brainliest
According to newton's 3rd law of motion,
For every action, there is equal and opposite reaction. So if we move a body against a rough surface, there were be reaction against the force applied.
So using conservation of energy, we know:
Work done to move a body = Work done against Friction
So, Force applied * distance moved = coefficient of Friction * Normal Reaction * distance moved
For a body moving against a normal surface, Normal Reaction (R) = mg
or, mass * acceleration * distance (s) = ∪ * R * distance(s)
or, mass * (v^2/2s) = ∪ * mass * gravity
Now, s = stopping distance = v²/ 2∪g
so, using given value,∪=0.05,
s = v2/2*0.05*g
We know, g = 10, so s = v²/(2*0.05*10) = v²
where v = initial velocity