Imagine a ball is moving on the following horizontal line.
. . . . . . . . . . . . . . . . . . . O. . . . . . . . . . . . . . . . . .
Take right as positive. O is the starting point of the ball. Denote the ball by o.
. . . . . . . . . . . . . . . . . . . O. . . . . . . ... . . o . . . . . .
Assume the ball is moving to the right. It has positive displacement since it is on the right of O, and positive velocity since its positive displacement is increasing.
.ñ
. . . . . . . . . . . . . . . . . . . O. . . . o . . . . . . . . . . . . .
Now the ball is returning to O. It still has positive displacement since its current position is still on the right of O. However, its velocity is negative since its positive displacement is decreasing and the direction of the velocity vector points left, which is the negative side.
By now you should be able to come up with a scenario where the ball has negative displacement and positive velocity.
You can observe the same phenomenon in daily life. Say, as a stretched spring bounces to its starting position, if we let the returning direction be positive, the string has negative displacement since it is on the negative direction, but has positive velocity. Bungee jump can also used to illustrate the phenomenon.
All subspecies of leopards can be found throughout Asia south Asia and India. except for African leopards
Resistance = (voltage) / (current)
For this piece of wire . . .
Resistance = (61 volts) / (6 Amperes)
Resistance = (61/6) (V/A)
<em>Resistance = (10 and 1/6) ohms</em>
Since you know the voltage and current, the length doesn't matter.
Answer:
v(t) = 27 units
Explanation:
The function s(t) represents the position of an object at time t moving along a line such that,

and

We need to find the average velocity of the object over the interval of time [2,6]. The velocity of the object is equal to the total distance divided by time. It is given by :


v(t) = 27 units
So, the average velocity of the object is 27 units. Hence, this is the required solution.