Answer:
Sample
Step-by-step explanation:
The people that are riding the roller coaster are only a select few people out of everyone in the entire park.
If you think about it this way, there are other rides in the park (there might be bumper cars and a Ferris wheel, etc.), so the people on the roller coaster are just a small group of the entire population of people in the park
THE ANSWER IS 5061 -1 =1 AND THE DIVIDE BY 8
Answer:
a) ![[-0.134,0.034]](https://tex.z-dn.net/?f=%5B-0.134%2C0.034%5D)
b) We are uncertain
c) It will change significantly
Step-by-step explanation:
a) Since the variances are unknown, we use the t-test with 95% confidence interval, that is the significance level = 1-0.05 = 0.025.
Since we assume that the variances are equal, we use the pooled variance given as
,
where
.
The mean difference
.
The confidence interval is

![= -0.05\pm 1.995 \times 0.042 = -0.05 \pm 0.084 = [-0.134,0.034]](https://tex.z-dn.net/?f=%3D%20-0.05%5Cpm%201.995%20%5Ctimes%200.042%20%3D%20-0.05%20%5Cpm%200.084%20%3D%20%5B-0.134%2C0.034%5D)
b) With 95% confidence, we can say that it is possible that the gaskets from shift 2 are, on average, wider than the gaskets from shift 1, because the mean difference extends to the negative interval or that the gaskets from shift 1 are wider, because the confidence interval extends to the positive interval.
c) Increasing the sample sizes results in a smaller margin of error, which gives us a narrower confidence interval, thus giving us a good idea of what the true mean difference is.
Answer:

Step-by-step explanation:
Given

To express as a rational number with 91 on the denominator.
91 ÷ 7 = 13
Thus multiply the numerator and denominator by 13, that is
= 
first off, let's convert the mixed fraction to improper fraction and then proceed, let's notice that by PEMDAS or order of operations, the multiplication is done first, and then any sums.
![\stackrel{mixed}{1\frac{7}{8}}\implies \cfrac{1\cdot 8+7}{8}\implies \stackrel{improper}{\cfrac{15}{8}} \\\\[-0.35em] ~\dotfill\\\\ -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \div \cfrac{1}{2}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{8} \cdot \cfrac{2}{1}\implies -\cfrac{3}{4}~~ + ~~\cfrac{15}{4} \\\\\\ \cfrac{-3+15}{4}\implies \cfrac{12}{4}\implies 3](https://tex.z-dn.net/?f=%5Cstackrel%7Bmixed%7D%7B1%5Cfrac%7B7%7D%7B8%7D%7D%5Cimplies%20%5Ccfrac%7B1%5Ccdot%208%2B7%7D%7B8%7D%5Cimplies%20%5Cstackrel%7Bimproper%7D%7B%5Ccfrac%7B15%7D%7B8%7D%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20~%5Cdotfill%5C%5C%5C%5C%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Cdiv%20%5Ccfrac%7B1%7D%7B2%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B8%7D%20%5Ccdot%20%5Ccfrac%7B2%7D%7B1%7D%5Cimplies%20-%5Ccfrac%7B3%7D%7B4%7D~~%20%2B%20~~%5Ccfrac%7B15%7D%7B4%7D%20%5C%5C%5C%5C%5C%5C%20%5Ccfrac%7B-3%2B15%7D%7B4%7D%5Cimplies%20%5Ccfrac%7B12%7D%7B4%7D%5Cimplies%203)