Th statement represented above : In a solution, the solvent is present in the larger amount is definitely FALSE. I choose this answer as a correct one as it also could be a solutions of alcohol ot for example <span>walter which means it's not so solid and liquid respectively. Hope it's clear! Regards!</span>
Answer:
B) No.
Explanation:
Okay,so,
this is equation is y=mx +b
mx represents the slope
and b represents the y-intercept
in order to figure this out you need to plot the y-intercept first
that makes its (0,-6) because the 6 is negative in the equation
4x is also equal to 4/1 since we dont know what x is
we have to do rise over run for this
you go up 4 spots on the y intercept from -6 because 4 is positive
then you go to the right 1 time because 1 is positive.
this leaves you at (1,-2)
so, (2,2) is NOT a solution
Answer:
0° C
Explanation:
Given that
Mass of ice, m = 50g
Mass of water, m(w) = 50g
Temperature of ice, T(i) = 0° C
Temperature of water, T(w) = 80° C
Also, it is known that
Specific heat of water, c = 1 cal/g/°C
Latent heat of ice, L(w) = 89 cal/g
Let us assume T to be the final temperature of mixture.
This makes the energy balance equation:
Heat gained by ice to change itself into water + heat gained by melted ice(water) to raise its temperature at T° C = heat lost by water to reach at T° C
m(i).L(i) + m(i).c(w)[T - 0] = m(w).c(w)[80 - T], on substituting, we have
50 * 80 + 50 * 1(T - 0) = 50 * 1(80 - T)
4000 + 50T = 4000 - 50T
0 = 100 T
T = 0° C
Thus, the final temperature is 0° C
The linear speed of the pepperoni is 0.628 m/s. Its direction is tangential to the circle.
We know that;
v = rω
r = radius of the piece = 10 cm or 0.1 m
ω = angular velocity
We have to convert 60 revolutions per minute to radians per second
1 rev/min = 0.10472 rad/s
60 revolutions per minute = 60 rev/min × 0.10472 rad/s/1 rev/min
= 6.28 rad/s
v = 0.1 m × 6.28 rad/s
v = 0.628 m/s
The direction of this velocity is tangential to the circle.
Learn more: brainly.com/question/4612545
Mars.
Water exists as small amounts of ice on Mars and as water vapor. It is suspected that Mars used to have flowing water on it, but that there is none left now.