There are several many equations that are available to relate the distance,
speed, and time of a body moving vertically in gravity. Happily, the only one
I can always remember without looking it up happens to be the right one to
use for this question !
Distance = (1/2) x (gravity) x (time)²
3.8 m = (1/2) x (9.8 m/s²) x (time)²
Divide each side
by 4.9 m/s² :
(3.8 m) / (4.9 m/sec²) = (time)²
0.7755 sec² = time²
Square root
of each side:
0.88 second = time
Answer:
See explanation below
Explanation:
In this case, you want to know if you put an object between these forces, which direction would go.
To know this, we need to calculate the moment of an object, which is defined as the product of a force and it's distance. In other words:
M = F * d (1)
And, in order to reach equilibrium the force will exert a direction in clockwise or anticlosewise, and these moments, should be even:
anticlockwise moment = clockwise moment.
The clockwise would be the forces to the right, and anticlock would the only force to the left of the axle.
Clockwise moment = (10 * 0.8) + (25 * 2.6) = 73 Ns
Anticlockwise moment = 34 * 3.5 = 119 Ns.
As we can see, the moment in the anticlockwise is higher than the actual clockwise moment, therefore, we can assume that the object will move anticlockwise, or simply move to the left.
Hope this helps
1. Root
2. Food
This is the answer hope u like it and plz mark me as brainlyist.
2.37eV stopping potential would be required to arrest the current of photoelectrons.
<h3 /><h3>What is stopping potential ?</h3>
The minimal negative voltage that must be provided to the anode to halt the photocurrent is known as stopping potential. When expressed in electron volts, the maximal kinetic energy of the electrons is equal to the stopping voltage.
Kmax = eV₀
2.37eV = eV₀
V₀ = 2.37eV
to learn more about stopping potential go to - brainly.com/question/4655588
#SPJ4