Answer: y = -3
<u>Step-by-step explanation:</u>
-8x - 5y = -1
<u>+8x </u> <u>+8x </u>
-5y = 8x - 1
<u> ÷-5 </u> <u> ÷-5</u> <u>÷-5</u>
y = 
y(2) = 
= 
= 
= -3
Your answer is -43/6
1/12(4+6x3)-9
=1/12(22)-9
=11/6-9
=11/6-54/6
=-43/6
<em>here's</em><em> your</em><em> solution</em>
<em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>it </em><em>is </em><em>given </em><em>that</em><em>. </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>height</em><em> </em><em>of </em><em>cylinder</em><em> </em><em>=</em><em> </em><em>1</em><em>5</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>radius</em><em> </em><em>of</em><em> </em><em>base </em><em>=</em><em> </em><em>9</em><em>u</em><em>n</em><em>i</em><em>t</em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>volume</em><em> of</em><em> </em><em>cylinder</em><em> </em><em>=</em><em> </em><em>π </em><em>r^</em><em>2</em><em>h</em><em> </em><em>cubic </em><em>unit</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>now,</em><em> </em><em>putting</em><em> the</em><em> value</em><em> of</em><em> </em><em>height</em><em> and</em><em> </em><em>radius </em>
<em> </em><em> </em><em> </em><em> </em><em> </em><em> </em><em>in </em><em>above </em><em>formula </em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>2</em><em>2</em><em>/</em><em>7</em><em> </em><em>*</em><em>9</em><em>*</em><em>9</em><em>*</em><em>1</em><em>5</em>
<em> </em><em> </em><em> </em><em> </em><em>=</em><em>></em><em> </em><em>volume</em><em> </em><em>=</em><em> </em><em>3</em><em>6</em><em>1</em><em>7</em><em>7</em><em>c</em><em>u</em><em>b</em><em>i</em><em>c</em><em> </em><em>unit</em>