Answer: 7.38 km
Explanation: The attachment shows the illustration diagram for the question.
The range of the bomb's motion as obtained from the equations of motion,
H = u(y) t + 0.5g(t^2)
U(y) = initial vertical component of velocity = 0 m/s
That means t = √(2H/g)
The horizontal distance covered, R,
R = u(x) t = u(x) √(2H/g)
Where u(x) = the initial horizontal component of the bomb's velocity = 287 m/s, H = vertical height at which the bomb was thrown = 3.24 km = 3240 m, g = acceleration due to gravity = 9.8 m/s2
R = 287 √(2×3240/9.8) = 7380 m = 7.38 km
I notice that even though we're working with frames of reference
here, you never said which frame the '5 km/hr' is measured in.
In fact ! You didn't even say which frame the '12 km/hr' of his
bike is measured in.
So there are several different ways this could go. I'll do it the way
I THINK you meant it, but that doesn't guarantee anything.
-- Simon is riding his bike at 12 km/hr relative to the sidewalk,
away from Keesha.
-- He throws a ball at Keesha, at 5 km/hr relative to his own face.
-- Keesha sees the ball approaching her at (12 - 5) = 7 km/hr
relative to the ground and to her.
Answer:
It will take 8.80 sec to fall from the building
Explanation:
We have given height pf the state building h = 380 m
Initial velocity will be 0 m /sec
So u = 0 m/sec
Acceleration due to gravity 
We have to find the fall time
According to second equation of motion 
So 

t = 8.80 sec
<span>I think they were also too skeptic to believe the continent did move or pull apart, even today do you believe that the
continents broke from one big flat plate, and that they pulled apart?
They also wonder what large force would be responsible for the movement.
It
was much later that evidences from plant and animal features that had
similarity from two different planets came up that scientists began
accepting the idea of continental drift.
And similar rock strata from two different opposite continents, showed similar rock strata.
All these evidences came up much later after Alfred Wengener.
So Alfred Wengener was honored Posthumously</span>
Velocity = 14 m/s
Time = 20 s
Displacement = Velocity×Time = (14×20) m = 280 m
The displacement is 280 m towards the direction of motion.