Answer:
471392.4 N
Explanation:
From the question,
Just before contact with the beam,
mgh = Fd.................... Equation 1
Where m = mass of the beam, g = acceleration due to gravity, h = height. F = average Force on the beam, d = distance.
make f the subject of the equation
F = mgh/d................ Equation 2
Given: m = 1900 kg, h = 4 m, d = 15.8 = 0.158 m
Constant: g = 9.8 m/s²
Substitute into equation 2
F = 1900(4)(9.8)/0.158
F = 471392.4 N
Answer:

Explanation:
The ball is moving in a circle, so the force is centripetal.
One formula for calculating centripetal force is:

The mass of the ball is 0.5 kilograms. The radius is 1.9 meters. The centripetal force is 85 Newtons or 85 kg*m/s².
= 85 kg*m/s²- m= 0.5 kg
- r= 1.9 m
Substitute the values into the formula.

Isolate the variable v. First, multiply both sides by 1.9 meters.



Divide both sides by 0.5 kilograms.



Take the square root of both sides of the equation.



The original measurements have 2 significant figures, so our answer must have the same.
For the number we found, 2 sig fig is the ones place. The 9 in the tenth place tells us to round the 7 to an 8.

The maximum speed is approximately <u>18 meters per second.</u>
The wavelength of the standing wave at fourth harmonic is; λ = 0.985 m and the frequency of the wave at the calculated wavelength is; f = 36.84 Hz
Given Conditions:
mass of string; m = 0.0133 kg
Force on the string; F = 8.89 N
Length of string; L = 1.97 m
1. To find the wavelength at the fourth normal node.
At the fourth harmonic, there will be 2 nodes.
Thus, the wavelength will be;
λ = L/2
λ = 1.97/2
λ = 0.985 m
2. To find the velocity of the wave from the formula;
v = √(F/(m/L)
Plugging in the relevant values gives;
v = √(8.89/(0.0133/1.97)
v = 36.2876 m/s
Now, formula for frequency here is;
f = v/λ
f = 36.2876/0.985
f = 36.84 Hz
Read more about Harmonics of standing waves at; brainly.com/question/10274257
#SPJ4
Answer:

Explanation:
The correct formula for the potential energy between two atoms in a particular molecule is:

Where
is the distance.
According to the definitions of potential energy and work, as well as the Work-Energy Theorem and the Principle of Energy Conservation. The relation between that and related force is:

The function is derived in terms of distance:

Then, it is needed to find at least of x so that F(x) equals to 0.



![x=\sqrt[4]{\frac{84}{104} }](https://tex.z-dn.net/?f=x%3D%5Csqrt%5B4%5D%7B%5Cfrac%7B84%7D%7B104%7D%20%7D)

Answer:
(a) 47.08°
(b) 47.50°
Explanation:
Angle of incidence = 78.9°
<u>For blue light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for blue light which is 1.340
n₁ is the refractive index of air which is 1
So,
Angle of refraction for blue light = sin⁻¹ 0.7323 = 47.08°.
<u>For red light :
</u>
Using Snell's law as:
Where,
Θ₁ is the angle of incidence
Θ₂ is the angle of refraction
n₂ is the refractive index for red light which is 1.331
n₁ is the refractive index of air which is 1
So,
Angle of refraction for red light = sin⁻¹ 0.7373 = 47.50°.