Answer:
Explanation:
Moving a magnet might cause a change in the magnetic field going through the solenoid. Whether or not it will change depends on the movement.
According to Faraday's law of induction a voltage is induced in a coil by a change in the magnetic flux. Magnetic flux is defined as the dot product of the magnetic field (a vector field) by the area enclosed by a loop of the coil.

The voltage is induced by the variation of the magnetic flux:

Where
ε: electromotive fore
N: number of turns in the coil
ΦB: magnetic flux
Moving the magnet faster would increase the rare of change of the magnetic flux, resulting in higher induced voltage.
Turning the magnet upside down would invert the direction of the magnetic field, reversing the voltage induced.
Answer:
a = v²/r
Explanation:
The acceleration of a body moving in a circular path is known as the centripetal acceleration. This is the acceleration of a body that keeps the body within the circular path. It is written in terms of the linear velocity v and the radius of the circle of rotation as shown;
a = v²/r where
v is the linear velocity
r is the radius
a is the centripetal acceleration
Answer:
t = 2.2 s
Explanation:
Given that,
Height of the roof, h = 24.15 m
The initial velocity of the pumpkin, u = 0
We need to find the time taken for the pumpkin to hit the ground. Let the time be t. Using second equation of kinematics to find it as follows :

Here, u = 0 and a = g

So, it will take 2.22 s for the pumpkin to hit the ground.
Early hypotheses were not based on observations.
Early hypotheses were not tested by experimentation.
Early hypotheses were formed from scientific questions.
Early hypotheses were influenced by creative thinking