V = 1/3 Bh v = 1/3 (13 ac)(43560ft^2/ac)(481ft) v = 90793560 ft^3 * 0.3048m/ft * 0.3048m/ft * 0.3048m/ft = 2570987m^3
Answer: W =
J
Explanation: Since the potassium ion is at the outside membrane of a cell and the potential here is lower than the potential inside the cell, the transport will need work to happen.
The work to transport an ion from a lower potential side to a higher potential side is calculated by

q is charge;
ΔV is the potential difference;
Potassium ion has +1 charge, which means:
p =
C
To determine work in joules, potential has to be in Volts, so:

Then, work is


To move a potassium ion from the exterior to the interior of the cell, it is required
J of energy.
We have here what is known as parallel combination of resistors.
Using the relation:

And then we can turn take the inverse to get the effective resistance.
Where r is the magnitude of the resistance offered by each resistor.
In this case we have,
(every term has an mho in the end)

To ger effective resistance take the inverse:
we get,

The potential difference is of 9V.
So the current flowing using ohm's law,
V = IR
will be, 0.0139 Amperes.
Answer:
Explanation:
The hippopotamus hearing threshold is 100dB
β = 100 dB
The threshold of human hearing is Io = 1 × 10^-12 W/m²
The sound intensity level is given as
β = 10•Log(I / Io)
100 = 10•Log(I / Io)
Divided Both sides by 10
100 / 10 = Log(I / Io)
10 = Log(I / Io)
Take inverse Logarithm ( antilog) of both sides
10^10 = 10^[Log(I / Io)]
10^10 = I / Io
Then,
I = 10^10 × Io
I = 10^10 × 1 × 10^-12
I = 1 × 10^-2 W/m²
I = 0.01 W/m²
The sound intensity is 0.01 W/m²
Answer:
<em>UP</em>
Explanation:
heat flows from higher level to lower level
( higher concentration to lower concentration )
and since temperature in above block is less than the lower block, the heat will flow from lower block to higher block .
( Up )