Answer:
T=+1.133N
Explanation:
Tension and weight are forces that have opposite directions
Weight is negative (downward)
W=m*g= 0.11kg*(-9.8m/s^2)
W= -1.078N
Tension is possitive (upward)
The total force will be the sum of both (the difference taking in consideration the direction)
Ft= T+W
Also the total force is the product of the mass due to acceleration:
Ft=m*a
Ft= +0.11kg*0.5m/s^2
Ft=+0.055N (upward)
Tension will be the difference between Ft and W:
T= Ft-W
T=+0.055N-(-1.078N)
T=+1.133N
Answer: d = 33 cm or 0.33 m
Explanation: In physics, Work is the amount of energy transferred to an object to make it move. It can be expressed by:
W = F.d.cosθ
F is the force applied to the object, d is the displacement and θ is the angle formed between the force and the displacement.
For the ice block, the angle is 0, i.e., force and distance are at the same direction, so:
W = F.d.cos(0)
W = F.d
To determine d:
d = 
d = 
d = 0.33 m
The distance d the block ice moved is 33 cm.
The magnitude of the vector B is 10.9
A vector is a quantity which has magnitude as well as direction and it follows vector laws of addition.
To calculate the magnitude of the vector, we have to put the square of the components of the vector along the axes under the root.
Vector B has components,
x = 2.4
y = 9.8
z = 4.1
Applying the formula,
|B| = √x²+y²+z²
|B| = √(2.4)² + (9.8)² + (4.1)²
|B| = √5.76+96.04+16.81
|B| = √118.61
|B| = 10.9
Talking about the direction the the Vector B, it will be the line joining the origin with the points (2.4,9.8,4.1)
To know more about Vectors, visit,
brainly.com/question/25705666
#SPJ9
Answer:
58.5 m
Explanation:
First of all, we need to find the total time the ball takes to reach the water. This can be done by looking at the vertical motion only.
The initial vertical velocity of the ball is

where
u = 21.5 m/s is the initial speed
is the angle
Substituting,

The vertical position of the ball at time t is given by

where
h = 13.5 m is the initial heigth
is the acceleration of gravity (negative sign because it points downward)
The ball reaches the water when y = 0, so

Which gives two solutions: t = 3.27 s and t = -0.84 s. We discard the negative solution since it is meaningless.
The horizontal velocity of the ball is

And since the motion along the horizontal direction is a uniform motion, we can find the horizontal distance travelled by the ball as follows:
