1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sesenic [268]
3 years ago
13

In which device is chemical energy transformed into electrical energy?

Physics
1 answer:
ehidna [41]3 years ago
4 0

Answer:

A) Battery

Explanation:

A Battery because it holds lithium whatever stuff and we can use to power our electronics (Chemical -> electrical)

Hair dryers (electrical-> kinetic)

Television ( Electrical -> ???)

Hydroelectric plant ( Kinetic -> electrical)

You might be interested in
Consider two thin, coaxial, coplanar, uniformly charged rings with radii a and b푏 (a
Wittaler [7]

Answer:

electric potential, V = -q(a²- b²)/8π∈₀r³

Explanation:

Question (in proper order)

Consider two thin coaxial, coplanar, uniformly charged rings with radii a and b (b < a) and charges q and -q, respectively. Determine the potential at large distances from the rings

<em>consider the attached diagram below</em>

the electric potential at point p, distance r from the center of the outer charged ring with radius a is as given below

Va = q/4π∈₀ [1/(a² + b²)¹/²]

Va = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} }

Also

the electric potential at point p, distance r from the center of the inner charged ring with radius b is

Vb = \frac{-q}{4\pi e0} * \frac{1}{(b^{2} + r^{2} )^{1/2} }

Sum of the potential at point p is

V = Va + Vb

that is

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } + \frac{-q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * \frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{q}{4\pi e0 } * \frac{1}{(b^{2} + r^{2} )^{1/2} }

V = \frac{q}{4\pi e0} * [\frac{1}{(a^{2} + r^{2} )^{1/2} } - \frac{1}{(b^{2} + r^{2} )^{1/2} }]

the expression below can be written as the equivalent

\frac{1}{(a^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + a^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} }

likewise,

\frac{1}{(b^{2} + r^{2} )^{1/2} }  = \frac{1}{(r^{2} + b^{2} )^{1/2} } = \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }

hence,

V = \frac{q}{4\pi e0} * [\frac{1}{{r(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{r(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

1/r is common to both equation

hence, we have it out and joined to the 4π∈₀ denominator that is outside

V = \frac{q}{4\pi e0 r} * [\frac{1}{{(1^{2} + \frac{a^{2} }{r^{2} } )}^{1/2} } - \frac{1}{{(1^{2} + \frac{b^{2} }{r^{2} } )}^{1/2} }]

by reciprocal rule

1/a² = a⁻²

V = \frac{q}{4\pi e0 r} * [{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} - {(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2}]

by binomial expansion of fractional powers

where (1+a)^{n} =1+na+\frac{n(n-1)a^{2} }{2!}+ \frac{n(n-1)(n-2)a^{3}}{3!}+...

if we expand the expression we have the equivalent as shown

{(1^{2} + \frac{a^{2} }{r^{2} } )}^{-1/2} = (1-\frac{a^{2} }{2r^{2} } )

also,

{(1^{2} + \frac{b^{2} }{r^{2} } )}^{-1/2} = (1-\frac{b^{2} }{2r^{2} } )

the above equation becomes

V = \frac{q}{4\pi e0 r} * [((1-\frac{a^{2} }{2r^{2} } ) - (1-\frac{b^{2} }{2r^{2} } )]

V = \frac{q}{4\pi e0 r} * [1-\frac{a^{2} }{2r^{2} } - 1+\frac{b^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * [-\frac{a^{2} }{2r^{2} } +\frac{b^{2} }{2r^{2} }]\\\\V = \frac{q}{4\pi e0 r} * [\frac{b^{2} }{2r^{2} } -\frac{a^{2} }{2r^{2} }]

V = \frac{q}{4\pi e0 r} * \frac{1}{2r^{2} } *(b^{2} -a^{2} )

V = \frac{q}{8\pi e0 r^{3} } * (b^{2} -a^{2} )

Answer

V = \frac{q (b^{2} -a^{2} )}{8\pi e0 r^{3} }

OR

V = \frac{-q (a^{2} -b^{2} )}{8\pi e0 r^{3} }

8 0
3 years ago
Which type of wave is more dangerous for humans? Microwaves or x-rays?
Dvinal [7]
X- rays. It can damage living tissue
3 0
3 years ago
Read 2 more answers
A ball is released from the top of a tower of height h meters. it takes T seconds to reach the ground . what is the position of
alekssr [168]

Answer:the

8/9 h

Explanation:

Height  =   1/2 a T^2     now change to T/3

 now height = 1/2 a (T/3)^2   =<u> 1/9</u>  1/2 a T^2     <===== it is 1/9 of the way down   or   8/9 h

 

3 0
2 years ago
One of China's cement factories has become more energy efficient by ________. a. using the extra gas and heat from the kilns to
OleMash [197]

Answer:

a. using the extra gas and heat from the kilns to generate electricity

Explanation:

Wiley Online Library

Energy Science & EngineeringVolume 5, Issue 2

Research Article Open Access

The generation of power from a cement kiln waste gases: a case study of a plant in Kenya

Stanley Ngari Irungu Peter Muchiri Jean Bosco Byiringiro

First published: 01 April 2017

https://doi.org/10.1002/ese3.153

Citations: 1

No funding information provided.

About

Sections

Share on

Abstract

The cement production process is energy intensive both in terms of the thermal energy (firing the kiln, drying and De carbonation) and electrical energy for driving the numerous drives within the process line. The average specific power consumption of the case study plant was 111 kWh/ton of cement with an average peak demand of 9.7 MW. The high cost of electric power at 0.14 USD/kWh results in very high cost of production that significantly lowers the company's profit margin and limits its competitive advantage. The generation of electrical power from waste heat recovery would reduce the electricity power bill through partially substituting the power procured from the national grid. This research evaluated the potential that the plant has for generating electrical power from the hot waste gases vented into the atmosphere and it was found that the plant has the potential to generate 3.4 MWh of electrical power. This results to a net potential to generate 2.89 MWh of electrical power after factoring in the auxiliary power consumption by Waste heat recovery plant system at 15%. This ultimately gave a reduction of 33% in the electricity power bill of the case study plant. The paper recommends the installation of a steam rankine cycle for the power generating plant. In this work the authors designed the steam boilers for the waste heat recovery plant for conversion of thermal energy to electrical energy, selected a commercial steam turbine and evaluated its economic feasibility and established that the designed plant would have a simple payback period of 2.7 years.

Introduction

The cement manufacturing process is an energy intensive industry, both in terms of thermal and electrical energy. The cost of energy keeps on fluctuating and this negatively impact on the manufacturing cost and eventually lowers the competitiveness and profitability of the cement industry. The energy costs in a cement industry account for about 26% of the total manufacturing cost of cement which is in the form of electrical energy accounting for 25% of the input energy and 75% is thermal energy 1. Furthermore, the sources of thermal energy utilized in the cement industry are mostly nonrenewable and this necessitates deep consideration of energy conservation to guarantee sustainability.

The case study plant suffers financial loss as a result of higher per unit cost of power from the grid and the poor reliability of the supply. The poor reliability of supply negatively affects the kiln operations (the heart of operations) as a result of the sensitivity of the process to power quality resulting in high set up costs. This significantly raises the cost of production for the case study plant and eventually results in the loss of her competitive advantage.

The generation of Power from the cement kiln Waste Heat gases is an energy saving opportunity and it entails the recovery of the heat energy contained in the waste gases that are emitted into the atmosphere from the cement kiln. According to 2, the generation of Power from kiln Waste Heat Recovery is about conversion of the waste heat from the clinkering process into useful electrical energy. Cogeneration of power is achieved by utilizing this waste heat streams from the preheater and the cooler, passing the waste gases through boilers, which in turn generate steam which is used to turn/run turbines to generate electricity

7 0
3 years ago
What is meant by specific latent heat of vaporization of water is -2.26mjkg^-1 or -2.26mj/kg?​
Otrada [13]

Answer:

The specific latent heat of a substance is the amount of energy required to change the state of one kilo of the substance without change in it temperature.The latent heat of vaporization or evaporation is the heat given to some mass to convert if from the liquid to the vapor phase.

3 0
3 years ago
Other questions:
  • The magnetic fields in all planets are generated by the dynamo effect, caused by rapidly rotating and conducting material flowin
    15·1 answer
  • If you are pushing a table with a force of 5 newtons what is the force pushing back on you
    8·1 answer
  • HURRY!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
    5·1 answer
  • A cannon fires a cannonball 500.0 m downrange when set at a 45.0o angle. At what velocity does the cannonball leave the cannon?
    5·1 answer
  • When a light wave enters into a medium of different optical density,
    6·1 answer
  • If the density of a diamond is 3.5 g/cm", what would be the mass of a diamond whose
    11·1 answer
  • You watch distant Sally Homemaker driving nails into a front porch at a regular rate of 1 stroke per second. You hear the sound
    13·1 answer
  • Electromagnetic radiation from a 8.25 mW laser is concentrated on a 1.23 mm2 area. Suppose a 1.12 nC static charge is in the bea
    12·1 answer
  • A_ is a cut made through the wood
    11·2 answers
  • A toy car with an initial velocity of 5 m/s slows to a stop with an acceleration of -1.5 m/s^2.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!