Answer:
Chemical to kinetic and thermal.
Explanation:
You would eat the food (chemical) than you would jog and move around (kinetic). While running your body would also give off heat (thermal).Than your body would sweat to cool itself down.
Answer:
The maximum height the box will reach is 1.72 m
Explanation:
F = k·x
Where
F = Force of the spring
k = The spring constant = 300 N/m
x = Spring compression or stretch = 0.15 m
Therefore the force, F of the spring = 300 N/m×0.15 m = 45 N
Mass of box = 0.2 kg
Work, W, done by the spring = and the kinetic energy gained by the box is given by KE =
Since work done by the spring = kinetic energy gained by the box we have
= therefore we have v = = = = 5.81 m/s
Therefore the maximum height is given by
v² = 2·g·h or h = = = 1.72 m
A male having the disease.
Answer:
<h2>Gravity :</h2><h3>the force that attracts a body towards the centre of the earth, or towards any other physical body having mass.</h3>
<h2>Solar day</h2><h3>A solar day is the time it takes for the Earth to rotate about its axis so that the Sun appears in the same position in the sky.</h3><h2> or</h2><h3>It is the time between successive meridian transits of the sun at a particular place.</h3>
Density = (mass) / (volume)
4,000 kg/m³ = (mass) / (0.09 m³)
Multiply each side
by 0.09 m³ : (4,000 kg/m³) x (0.09 m³) = mass
mass = 360 kg .
Force of gravity = (mass) x (acceleration of gravity)
= (360 kg) x (9.8 m/s²)
= (360 x 9.8) kg-m/s²
= 3,528 newtons .
That's the force of gravity on this block, and it doesn't matter
what else is around it. It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).
Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity. That's the buoyant force due to the displaced water.
The block is displacing 0.09 m³ of water. Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water. The weight
of that water is (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.
So while it's in the water, the block seems to weigh
(3,528 - 882) = 2,646 newtons (about 595.2 pounds) .
But again ... it's not correct to call that the "force of gravity acting
on the block in water". The force of gravity doesn't change, but
there's another force, working against gravity, in the water.