<span>C4H10 + 6.5 O2 ----> 4CO2 + 5H2O
2C4H10 + 13 O2 ----> 8CO2 + 10H2O
1. Count the C on the left (4), put a 4 where the C on the right.
2. Count the H on the left (1), you have two on the right, so you multimply this two by 5. Put the 5 in front of the H2O
3. Count the O on the right. You have 4*2 + 5 = 13. You have two on the left, so you need 6.5 on the left.
4. Now multiply everything on the equation by two so you have nice integer numbers.
5. check you have the same amount of everything on each side.
Example C: left 8, right 8, etc.
I hope this helps. :)</span><span>
</span>
I think this is learned in chemistry do you have any notes that can help
Answer:
-3.28 × 10⁴ J
Explanation:
Step 1: Given data
- Pressure exerted (P): 27.0 atm
- Initial volume (Vi): 88.0 L
- Final volume (Vf): 100.0 L
Step 2: Calculate the work (w) done by the gaseous mixture
We will use the following expression.
w = -P × ΔV = -P × (Vf - Vi)
w = -27.0 atm × (100.0 L - 88.0 L)
w = -324 atm.L
Step 3: Convert w to Joule (SI unit)
We will use the conversion factor 1 atm.L = 101.325 J.
-324 atm.L × 101.325 J/1 atm.L = -3.28 × 10⁴ J
Answer:
When the string on a violin vibrates, waves move in both directions along the string, interfering with each other. These waves are standing waves.
Explanation:
What are Standing Waves?
The Standing Waves are waves generated due to the vibrational frequency that produces reflected waves capable of interfering with the incident waves.