Answer: Attractive forces between particels
Explanation:
Answer:
the nucleus is the center of the atom, made up of protons and neutrons, without the nucleus you'd just have a bunch of electrons floating around; the nucleus is positively charged
protons are the positively charged particles that sit within the nucleus
neutrons are particles of no charge that sit within the nucleus, and because they have no charge, they do not cancel out the positive charge of the protons, making the nucleus positive
electrons are negatively charged particles that float around the nucleus in an area known as the electron cloud, they orbit around the nucleus because they are attracted to the positive charge of the nucleus (caused by the protons), with charges, opposites attract
Explanation:
Answer:
All around you there are chemical reactions taking place. Green plants are photosynthesising, car engines are relying on the reaction between petrol and air and your body is performing many complex reactions. In this chapter we will look at two common types of reactions that can occur in the world around you and in the chemistry laboratory. These two types of reactions are acid-base reactions and redox reactions.
Explanation:
Answer:
A. When two aqueous solutions are mixed, a precipitate is formed.
Explanation:
The precipitate (a solid substance that falls from the liquid) is the result of a chemical reaction taking place between the liquids.
The other three answer choices are indicative of physical changes (temperature change, phase change, color change).
Answer:
This question is incomplete but the correct option is B
Explanation:
This question is incomplete because of the absence of the "Reference Table S", however the question can still be answered in the absence of the table. The energy described in the question is the ionization energy (energy required to remove the most loosely bound electron in an atom). This question seeks to know the atom (from the options provided) with the least ionization energy.
Ionization energy increases from left to right across the period because it's easier to remove a single electron (valence electron) from the outermost shell than to remove two electrons from the same shell; thus the more the valence electrons (in a shell), the higher the ionization energy. Thus, bromine (Br) and tin (Sn) have high ionization energies because they have more number of electrons in there outermost shell.
<u>Berylium (Be) and strontium (Sr) are both in the group 2 of the periodic table because they both have 2 electrons in there outermost shell. Ionization energy decreases down a group. This is because the farther an electron is from the nucleus, the weaker the force of attraction between the nucleus and the electron. Thus, strontium (Sr) would have a lesser ionization energy between the two and would indeed have the least ionization among the options provided</u>. Hence, the correct option is B