Answer:
Mg(NO4)2 is 180.3 g/mol
Explanation:
First find the substance formula.
Magnesium Nitrate.
Magnesium is a +2 charge.
Nitrate is a -1 charge.
So to balance the chemical formula,
We need 1 magnesium atom for every nitrate atom.
2(1) + 1(-2) = 0
So the substance formula is Mg(NO4)2.
Now find the molar mass of Mg(NO4)2.
Mg = 24.3 amu
N = 14.0 amu
O = 16.0 amu
They are three nitrogen and twelve oxygen atoms.
So you do this: 24.3 + 14.0(2) + 16.0(8) = 180.3 g/mol
So the molar is mass is 180.3 g/mol.
The final answer is Mg(NO4)2 is 180.3 g/mol
Hope it helped!
Answer:
Heat transfer in step 2 = 47.75 J
Explanation:
Internal energy = heat + work done
U = Q + W
In a cyclic process the total internal energy change of the system = 0.
In the process there are two steps. The total heat exchange in the process is the sum of heat exchanges in the two processes.
We have to find the heat exchange in step 2.
In step 1,
W = 1.25 J Q = -37 J
= -37 + 1.25 = -35.75 J
In step 2, the internal energy change will be negative of that in step 1.
U = 35.75 J
W = -12 J
U = Q + W
35.75 = Q -12
Q = 47.75 J
Heat transfer in step 2 = 47.75 J
Answer:
The correct answer is - 29.45 / 100 x 25.6 = 7.5392 grams
Explanation:
It is given in the question that in 100 gms of CaSO4 there are 29.45 grams of Ca present and there is 25.6 gram of total CaSO4 sample present, So, to calculate the exact value of calcium in this given sample is:
mass of Ca = total amount of sample*percentage of calcium in sample /100
M of Ca =25.6*29.45/100
M of Ca = 7.5392 grams
Thus, the correct procedure is given by 29.45 / 100 x 25.6 = 7.5392 grams
Actually, we can answer the problem even without the first statement. All we have to do is write the reaction for the production of sulfur trioxide.
2 S + 3 O₂ → 2 SO₃
The stoichiometric calculations is as follows:
6 g S * 1 mol/32.06 g S = 0.187 mol S
Moles O₂ needed = 0.187 mol S * 3 mol O₂/2 mol S = 0.2805 mol O₂
Since the molar mas of O₂ is 32 g/mol,
Mass of O₂ needed = 0.2805 mol O₂ * 32 g/mol = 8.976 g O₂
Explanation:
acid --> HCN
base --> KCN
now
another base NaOH is added
we know that
base will react with an acid
so
OH- + HCN ---> CN- + H20
we can see that
HCN is used up , so number of moles of HCN will decrease
CN- is being formed , so number of moles of CN- will increase.
A false
B false
C false
D true
E false