Answer:
12.6.
Explanation:
- We should calculate the no. of millimoles of KOH and HCl:
no. of millimoles of KOH = (MV)KOH = (0.183 M)(45.0 mL) = 8.235 mmol.
no. of millimoles of HCl = (MV)HCl = (0.145 M)(35.0 mL) = 5.075 mmol.
- It is clear that the no. of millimoles of KOH is higher than that of HCl:
So,
[OH⁻] = [(no. of millimoles of KOH) - (no. of millimoles of HCl)] / (V total) = (8.235 mmol - 5.075 mmol) / (80.0 mL) = 0.395 M.
∵ pOH = -log[OH⁻]
∴ pOH = -log(0.395 M) = 1.4.
∵ pH + pOH = 14.
∴ pH = 14 - pOH = 14 - 1.4 = 12.6.
Reactants + Energy → Products
I guess this is the answer
You’re welcome ;)
We can rephrase the statement with a little more specificity in order to understand the answer here.
The mass of the products can never be more than the The mass that is expected.
Iron oxide is rust. So oil would be an inhibitor.
Take a look at their electronegativity values for this one. Electronegativity is the relative attraction that a atom in a molecule has for the shared pair of electrons in a covalent bond<span>. Salt is Sodium Chloride which is NaCl. Na has an electronegativity value of 0.93. Cl has an electronegativity value of 3.16. The difference between the two is 2.23. This is much higher than 1.7 (a pure covalent bond e.g. Oxygen-Oxygen bond O2) therefore it is a highly ionic compound. If this was less than 1.7 it would be a polar covalent molecule. </span>