Answer is: 9623.85 kJ of heat is <span>transferred from iron ingot.
</span>m(Fe) = 24.7 kg · 1000 g/kg = 24700 g; mass of iron ingot.
C = 0.4494 J/g°C; t<span>he specific heat of iron
</span>ΔT = 880°C - 13°C; temperature <span>difference.</span>
ΔT = 867°C.
Q = m·C·ΔT.
Q = 24700 g · 0.4494 J/g°C ·867°C.
Q = 9623856.06 J ÷ 1000J/kJ.
Q = 9623.85 kJ.
4X + 3O₂ = 2X₂O₃
n(X₂O₃)=0.02225 mol
m(X)=4.000 g
x - the molar mass of metal
m(X)/4x=n(X₂O₃)/2
x=m(X)/{2n(X₂O₃)}
x=4.000/{2*0.02225)=89.89 g/mol
X=Y (yttrium)
Answer:
if it cannot be made to fit the new findings
The atomic structure of the atom contains 9 positively charged particles (protons) and 10 neutrally charged particles (neutrons) in the center of the atom in a clump called the nucleus. Those 9 negatively charged particles (electrons) are moving around outside of the nucleus.
There are 10 neutral charges, because the mass of 19 comes from the number of neutral charges plus the number of positive charges.
To calculate the number of neutral charges, subtract the positive charges from the mass (19 - 9), and you get the number of neutral charges (10).