Answer:
Option (1) Br– is the catalyst, and the reaction follows a faster pathway with Br– than without
Explanation:
Let us consider the equation below:
Step 1:
H2O2(aq) + Br–(aq) → H2O(l) + BrO–(aq)
Step 2:
BrO–(aq) + H2O2(aq) → H2O(l) + O2(g) + Br–(aq)
From the above equation, we can see that Br– is unchanged.
This implies that Br– is the catalyst as catalyst does not take part in a chemical reaction but they create an alternate pathway to lower the activation energy in order for the reaction to proceed at a much faster rate to arrive at the products.
The answer is b. radon-222. The alpha decay means that it will emit an alpha particle when decays. The alpha particle has two protons and two neutrons. So Radium(88) minus two protons will become Radon(86). And the atomic mass will become 226-4=222.
<span>Determine the root-mean-square sped of CO2 molecules that have an average Kinetic Energy of 4.21x10^-21 J per molecule. Write your answer to 3 sig figs.
</span><span>
E = 1/2 m v^2
If you substitute into this formula, you will get out the root-mean-square speed.
If energy is Joules, the mass should be in kg, and the speed will be in m/s.
1 mol of CO2 is 44.0 g, or 4.40 x 10^1 g or 4.40 x 10^-2 kg.
If you divide this by Avagadro's constant, you will get the average mass of a CO2 molecule.
4.40 x 10^-2 kg / 6.02 x 10^23 = 7.31 x 10^-26 kg
So, if E = 1/2 mv^2
</span>v^2 = 2E/m = 2 (4.21x10^-21 J)/7.31 x 10^-26 kg = 115184.68
Take the square root of that, and you get the answer 339 m/s.
Answer:
4.90 x 10 24 atoms
Explanation:
the 24 is the exponent for the 10
The principal ingredient of glass is quartz sand (SiO₂).