A mole of any gas occupied 22.4 L at STP. So, the number of moles of nitrogen gas at STP in 846 L would be 846/22.4 = 37.8 moles of nitrogen gas.
Alternatively, you can go the long route and use the ideal gas law to solve for the number of moles of nitrogen given STP conditions (273 K and 1.00 atm). From PV = nRT, we can get n = PV/RT. Plugging in our values, and using 0.08206 L•atm/K•mol as our gas constant, R, we get n = (1.00)(846)/(0.08206)(273) = 37.8 moles, which confirms our answer.
Answer:
Avogadro number of pennies will extend to a distance of 6.02 * 10¹⁷ km
<em>Note: The question is missing some parts. The complete question is as follows;</em>
<em>A penny has a thickness of approximately 1.0 mm . If you stack ed Avogadro's number of pennies one on top of the other on Earth 's surface, how far would the stack extend (in km)? [For comparison, the sun is about 150 million km from Earth and the nearest star (Proxim a Centauri) is about 40 trillion km from Earth.]</em>
Explanation:
Avogadro number = 6.02 * 10²³
thickness of a penny = 1.0 mm
I mm = 0.001 m
Thickness of Avogadro number of pennies stacked one upon another will be:
6.02 * 10²³ * 0.001 m = 6.02 * 10²⁰ m
Distance in km;
1 m = 0.001 km
therefore, 6.02 * 10²⁰ m = 6.02 * 10²⁰ * 0.001 km = 6.02 * 10¹⁷ km
Avogadro number of pennies will extend to a distance of 6.02 * 10¹⁷ km
Answer:
1.09 L
Explanation:
There is some info missing. I think this is the original question.
<em>Calculate the volume in liters of a 0.360 mol/L barium acetate solution that contains 100 g of barium acetate. Be sure your answer has the correct number of significant digits.</em>
<em />
The molar mass of barium acetate is 255.43 g/mol. The moles corresponding to 100 grams are:
100 g × (1 mol/255.43 g) = 0.391 mol
0.391 moles of barium acetate are contained in an unknown volume of a 0.360 mol/L barium acetate solution. The volume is:
0.391 mol × (1 L/0.360 mol) = 1.09 L
Answer:
4
Explanation:
I guess it says more about the problem
Temperature is a measure of the average kinetic energy of the particles in an object .Temperatures also measure how kinetic energy is not how hot or cold it is. It’s measuring what the amount of Kinetic Energy there when you throw something in the air and it comes back down