Answer:
The rate of consumption of
is 2.0 mol/L.s
Explanation:
Applying law of mass action to this reaction-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=-\frac{1}{3}\frac{\Delta [O_{2}]}{\Delta t}=\frac{1}{2}\frac{\Delta [N_{2}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D-%5Cfrac%7B1%7D%7B3%7D%5Cfrac%7B%5CDelta%20%5BO_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B2%7D%5Cfrac%7B%5CDelta%20%5BN_%7B2%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
where
represents rate of consumption of
,
represents rate of consumption of
,
represents rate of formation of
and
represents rate of formation of
.
Here rate of formation of
is 3.0 mol/(L.s)
From the above equation we can write-
![-\frac{1}{4}\frac{\Delta [NH_{3}]}{\Delta t}=\frac{1}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B1%7D%7B4%7D%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B1%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Here ![\frac{\Delta [H_{2}O]}{\Delta t}=3.0 mol/(L.s))](https://tex.z-dn.net/?f=%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D%3D3.0%20mol%2F%28L.s%29%29)
So, ![-\frac{\Delta [NH_{3}]}{\Delta t}=\frac{4}{6}\frac{\Delta [H_{2}O]}{\Delta t}](https://tex.z-dn.net/?f=-%5Cfrac%7B%5CDelta%20%5BNH_%7B3%7D%5D%7D%7B%5CDelta%20t%7D%3D%5Cfrac%7B4%7D%7B6%7D%5Cfrac%7B%5CDelta%20%5BH_%7B2%7DO%5D%7D%7B%5CDelta%20t%7D)
Hence,
Water, lower, and I'm not too sure for the third one... sorry.
Answer: The balanced equation for the given reaction is
.
Explanation:
A chemical equation which contains same number of atoms on both reactant and product side.
For example, 
Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
To balance this equation, multiply
by 2 on reactant side and multiply
by 2. Hence, the equation will be re-written as follows.

Here, number of atoms on reactant side are as follows.
Number of atoms on product side are as follows.
Now, there are same number of atoms on both reactant and product side. So, this equation is balanced.
Thus, we can conclude that the balanced equation for the given reaction is
.
Technically speaking, yes you can. Using a microscope though.
Science is a continuous profession of study because new ideas are produced based on new evidence. Also, there are different topics of science such as climate change or new cures to different diseases.