Answer:
T = 30.42°C
Explanation:
According to the conservation of energy principle:

E = 120 KJ
mc = mass of copper = 13 kg
Cc = specific heat capacity of copper = 0.385 KJ/kg.°C
T2c = T2w = Final Equilibrium Temperature = T = ?
T1c = Initial Temperature of Copper = 27°C
T1w = Initial Temperature of Water = 50°C
mw = mass of water = 4 kg
Cw = specific heat capacity of water = 4.2 KJ/kg.°C
Therefore,

<u>T = 30.42°C</u>
<span>It's more accurate than scale diagrams.
You don't need tools (graph paper, protractor etc)
Also, if you are using computers, it easy to programmme.</span><span>
</span>
Vertical:
(20 m/s) sin(25º) ≈ 8.45 m/s
Horizontal:
(20 m/s) cos(25º) ≈ 18.1 m/s
Answer:
a) ΔL/L = F / (E A), b)
= L (1 + L F /(EA) )
Explanation:
Let's write the formula for Young's module
E = P / (ΔL / L)
Let's rewrite the formula, to have the pressure alone
P = E ΔL / L
The pressure is defined as
P = F / A
Let's replace
F / A = E ΔL / L
F = E A ΔL / L
ΔL / L = F / (E A)
b) To calculate the elongation we must have the variation of the length, so the length of the bar must be a fact. Let's clear
ΔL = L [F / EA]
-L = L (F / EA)
= L + L (F / EA)
= L (1 + L (F / EA))
on touching electroscope gets positively charged, so answer is B. conduction