Explanation:
We need to calculate the speed of light in each materials
(I). Gallium phosphide,
The index of refraction of Gallium phosphide is 3.50
Using formula of speed of light
....(I)
Where,
= index of refraction
c = speed of light
Put the value into the formula


(II) Carbon disulfide,
The index of refraction of Gallium phosphide is 1.63
Put the value in the equation (I)


(III). Benzene,
The index of refraction of Gallium phosphide is 1.50
Put the value in the equation (I)


Hence, This is the required solution.
Answer:
When an object moves in a straight line with a constant acceleration, you can calculate its acceleration if you know how much its velocity changes and how long this takes.
The formula is,
Acceleration = change in velocity / time taken
The equation for acceleration can also be represented as:
a = (v-u) \ t
The change in velocity v – u = 5 – 0 = 5 m/s.
The acceleration = change in velocity ÷ time = 5 m/s ÷ 2 s = 2.5 m/s^2
Polar regions do not receive direct sunlight during the winter months due to the tilt in the Earth's<span> axis. Hence, polar regions can get very cold. Antarctica is the </span>coldest place on Earth. <span>The </span>coldest places on Earth<span> tend to be located </span>near the poles<span>. Hope this answers the question.</span>
Answer:
2.5m/s²
Explanation:
Given parameters:
Mass of car = 200kg
Force on car = 500N
Unknown:
Acceleration of the car = ?
Solution:
According to Newton's second law of motion:
Force = mass x acceleration
Insert the given parameters and find the acceleration;
500 = 200 x acceleration
acceleration = 2.5m/s²
Answer: 6.12 kg
Explanation:
Since Mass of ball = ? (let the unknown value be Z)
Acceleration due to gravity, g= 9.8m/s^2
Height, h = 1.5 metres
Gravitational potential energy GPE = 90J
Gravitational potential energy depends on the weight of the ball, the action of gravity and height.
Thus, GPE = Mass m x Acceleration due to gravity g x Height h
90J = Z x 9.8m/s^2 x 1.5m
90 = Z x 14.7
Z = 90/14.7
Z = 6.12 kg
Thus, the bowling ball weigh 6.12 kilograms