The animals, climate, weather.
mass percent concentration = 15.7 %
molar concentration of glucose solution 1.03 M
Explanation:
To calculate the mass percent concentration of the solution we use the following formula:
concentration = (solute mass / solution mass) × 100
solute mass = 60.5 g
solution mass = solute mass + water mass
solution mass = 60.5 + 325 = 385.5 g (I used the assumption that the solution have a density of 1 g/mL)
concentration = (60.5 / 385.5) × 100 = 15.7 %
Now to calculate the molar concentration (molarity) of the solution we use the following formula:
molar concentration = number of moles / volume (L)
number of moles = mass / molecular weight
number of moles of glucose = 60.5 / 180 = 0.336 moles
molar concentration of glucose solution = 0.336 / 0.325 = 1.03 M
Learn more about:
molarity
brainly.com/question/10053901
#learnwithBrainly
Answer : The current passing between the electrodes is, 
Explanation :
First we have to calculate the charge of sodium ion.

where,
q = charge of sodium ion
n = number of sodium ion = 
e = charge on electron = 
Now put all the given values in the above formula, we get:

Now we have to calculate the charge of chlorine ion.

where,
q' = charge of chlorine ion
n = number of chlorine ion = 
e = charge on electron = 
Now put all the given values in the above formula, we get:

Now we have to calculate the current passing between the electrodes.



Thus, the current passing between the electrodes is, 
Answer:
A. DH° = –36 kJ
Explanation:
It is possible to obtain DH° of a reaction by the sum of DH° of half reactions. The DH° of the reaction:
B₂H₆(g) → 2B(s) + 3H₂(g)
Could be obtained from:
<em>(1) </em>2B(s) + 1.5O₂(g) → B₂O₃(s) DH° = –1273kJ
<em>(2) </em>B₂H₆(g) + 3O₂(g) → B₂O₃(s) + 3H₂O(g) DH° = –2035kJ
<em>(3) </em>H₂(g) + 0.5O₂(g) → H₂O(g) DH° = –242kJ
The sum of (2) - (1) gives:
B₂H₆(g) + 1.5O₂(g) → 2B(s) + 3H₂O(g) DH° = -2035kJ - (-1273kJ) = -762kJ
Now, this reaction - 3×(3):
B₂H₆(g) → 2B(s) + 3H₂(g) DH° = -762kJ - (3×-242kJ) = -36kJ
Thus, right answer is:
<em>A. DH° = –36 kJ</em>
Answer:
<h2>
32°F
/0°C
</h2>
Explanation:
At what temperature does the melting point occur?
32°F
/0°C
(32°F − 32) × 5/9 = 0°C
At temperatures above 32°F (0°C), pure water ice melts and changes state from a solid to a liquid (water); 32°F (0°C) is the melting point. For most substances, the melting and freezing points are about the same temperature.
Is Melting Point affected by temperature?
Melting point, the temperature at which the solid and liquid forms of a pure substance can exist in equilibrium. As heat is applied to a solid, its temperature will increase until the melting point is reached. More heat then will convert the solid into a liquid with no temperature change.