Answer:
Amount of excess Carbon (ii) oxide left over = 23.75 g
Explanation:
Equation of the reaction: Fe₂O₃ + 3CO ----> 2Fe + 3CO₂
Molar mass of Fe₂O₃ = 160 g/mol;
Molar mass of Carbon (ii) oxide = 28 g/mol
From the equation of reaction, 1 mole of Fe₂O₃ reacts with 3 moles of carbon (ii) oxide; i.e. 160 g of iron (iii) oxide reacts with 84 g (3 * 28 g) of carbon (ii) oxide
450 g of Fe₂O₃ will react with 450 * 84/180) g of carbon (ii) oxide = 236..25 g of carbon (ii) oxide
Therefore the excess reactant is carbon (ii) oxide.
Amount of excess Carbon (ii) oxide left over = 260 - 236.25
Amount of excess Carbon (ii) oxide left over = 23.75 g
Each mineral has its own properties different from other minerals because minerals are made up of different elements. Different elements which can be found on the periodic table all have unique properties, therefore, gold will have distinct properties in comparison with zinc or aluminium for example because they are made up of different elements :))))
I hope this is helpful
have a nice day
Answer:
Buffalo and Watertown.
Explanation:
This is correct as the Interior lowlands are located ib the US. These are correct as the others are in the US but aren't located anywhere near the Interior Lowlands.
Answer:
The final volume should be 22 mL
Explanation:
For this problem, we will use the dilution equation:
C1*V1 = C2*V2
<u>Step 1</u>: Data given
with C1 = the initial concentration C1 = 0.220 mg/L
with V1 = the initial volume = 10 mL = 10 * 10^-3 L
with C2 = the final concentration = 0.100 mg/L
with V2 = the final volume = TO BE DETERMINED
<u>Step 2</u>: Calculating the final volume
C1*V1 = C2*V2
0.220 mg/L * 10*10^-3 L = 0.100 mg/L * V2
V2 = (0.220 mg/L * 10*10^-3 L) / 0.100 mg/L
V2 =0.022 L = 22 mL
The final volume should be 22 mL