It is the horizon layer
~Hope this helps~
6. V = IR= 1.2×100= 120 V
i tried my best, hope it helps!
Answer:answers are in the explanation
Explanation:
(a). pH less than 7 between 1 - 3.5 are strong acid, and between 4.5-6.9 weak acid.
pH greater than 7; between 10-14 is a strong base, and between 7.1 - 9, it is weakly basic.
(b). Equation of reaction;
HBr + KOH ---------> KBr + H2O
One mole of HBr reacts with one mole of KOH to give one Mole of KBr and one mole of H2O
Calculating the mmol, we have;
mmol KOH = 28.0 ml × 0.50 M
mmol KOH= 14 mmol
mmol of HBr= 56 ml × 0.25M
mmol of HBr= 14 mmol
Both HBr and KOH are used up in the reaction, which leaves only the product,KBr and H2O.
The pH here is greater than 7
(C). [NH4^+] = 0.20 mol L^-1 × 50 ml. L^-1 ÷ 50 mL + 50mL
= 0.10 M
Ka=Kw/kb
10^-14/ 1.8× 10^-5
Ka= 5.56 ×10^-10
Therefore, ka= x^2 / 0.20
5.56e-10 = x^2/0.20
x= (0.20 × 5.56e-10)^2
x= 1.05 × 10^-5
pH = -log [H+]
pH= - log[1.05 × 10^-5]
pH = 4.98
Acidic(less than 7)
(c). 0.5 × 20/40
= 0.25 M
Ka= Kw/kb
kb= 10^-14/1.8× 10^-5
Kb = 5.56×10^-10
x= (5.56×10^-10 × 0.5)^2
x= 1.667×10^-5 M
pH will be basic
Many electrophilic aromatic halogenations require the presence of an aluminum trihalide as a catalyst. We generally acetylated the amino group as protection. Now, this acetanilide can be brominated at Ortho or para position. An atom that is attached to an aromatic system usually hydrogen is replaced by an electrophile is an organic reaction which is called Electrophilic aromatic substitution. There are what you called important electrophilic aromatic substitutions they are aromatic nitration, aromatic sulfonation, aromatic halogenation and acylation and alkylating Friedel-Crafts reaction. Aromatic bromination is an electrophilic aromatic substitution (EAS) reaction, which will require benzene to act as a nucleophile to acquire an electrophile. Therefore, any directing groups that activate the ring will make it react more quickly with respect to aromatic bromination. Acetanilide is a moderately-activated ring <span>having a decent EWG.</span>
Both are highly soluble in water