<h3>
Answer:</h3>
49 N
<h3>
Explanation:</h3>
<u>We are given;</u>
- Mass of the brick as 3 kg
- The coefficient of friction as 0.6
We are required to determine the force that must be applied by the woman so the brick does not fall.
- We need to importantly note that;
- For the brick not to fall the, the force due to gravity is equal to the friction force acting on the brick.
- That is; Friction force = Mg
But; Friction force = μ F
Therefore;
μ F = mg
0.6 F = 3 × 9.8
0.6 F = 29.4
F = 49 N
Therefore, she must use a force of 49 N
knowledge of first aid ... eg St John Ambulance, Red Cross etc. I think that everyone in a school should be taught First Aid.
a) 2.75 s
The vertical position of the ball at time t is given by the equation

where
h = 4 m is the initial height of the ball
u = 12 m/s is the initial velocity of the ball (upward)
g = 9.8 m/s^2 is the acceleration of gravity (downward)
We can find the time t at which the ball reaches the ground by substituting y=0 into the equation:

This is a second-order equation. By solving it for t, we find:
t = -0.30 s
t = 2.75 s
The first solution is negative, so we discard it; the second solution, t = 2.75 s, is the one we are looking for.
b) -15.0 m/s (downward)
The final velocity of the ball can be calculated by using the equation:

where
u = 12 m/s is the initial (upward) velocity
g = 9.8 m/s^2 is the acceleration of gravity (downward)
t is the time
By subsisuting t = 2.75 s, we find the velocity of the ball as it reaches the ground:

And the negative sign means the direction is downward.
Answer:
the motion that repeat itself in equal interval of time is called periodic motion and it is equal to harmonic motion. for example pendulum