Answer: The magnitude of the current in the second wire 2.67A
Explanation:
Here is the complete question:
Two straight parallel wires are separated by 7.0 cm. There is a 2.0-A current flowing in the first wire. If the magnetic field strength is found to be zero between the two wires at a distance of 3.0 cm from the first wire, what is the magnitude of the current in the second wire?
Explanation: Please see the attachments below
Answer:
it's all around you and it can't be destroyed
No friction present means: Ek = Ep
So Ek = mgh = 10 * 9.8 * 2 = 196 J
Answer:
v₂ = 70 m / s
Explanation:
For this exercise let's use Bernoulli's equation
where subscript 1 is for the top of the mountain and subscript 2 is for Tuesday's level
P₁ + ½ ρ v₁² + ρ g y₁ = P₂ +1/2 ρ v₂² + ρ g y₂
indicate that the pressure in the two points is the same, y₁ = 250 m, y₂ = 0 m, the water in the upper part, because it is a reservoir, is very large for which the velocity is very small, we will approximate it to 0 (v₁ = 0), we substitute
ρ g y₁ = ½ ρ v₂²
v₂ =
let's calculate
v₂ = √( 2 9.8 250)
v₂ = 70 m / s
Answer:
A) some of the rocks energy is transformed to thermal energy
Explanation:
If we neglect air resistance during the fall of the rock, than the mechanical energy of the rock (which is sum of its potential energy and its kinetic energy) would be constant during the entire motion, so the total energy of the rock at the top would be the same as the sum of its potential energy and kinetic energy at the bottom.
However, this not occurs, due to the presence of air resistance. In fact, air resistance acts against the fall of the rock, and because of the friction between the molecules of air and the surface of the rock, the rock loses part of its energy. This energy is converted into thermal energy of the molecules of the air.