Calculating for the moles of H+
1.0 L x (1.00 mole / 1 L ) = 1 mole H+
From the given balanced equation, we can use the stoichiometric ratio to solve for the moles of PbCO3:
1 mole H+ x (1 mole PbCO3 / 2 moles H+) = 0.5 moles PbCO3
Converting the moles of PbCO3 to grams using the molecular weight of PbCO3
0.5 moles PbCO3 x (267 g PbCO3 / 1 mole PbCO3) = 84.5 g PbCO3
Answer: The actions that must have affected the igneous rock in order to form the sedimentary rock is that (It must have been broken down into sediments).
Explanation:
Rocks are solid structures that occurs naturally which is made up of different minerals. There are three main types of rocks, these includes:
--> METAMORPHIC ROCKS: These are the type of rocks which are formed by temperature and pressure changes inside the Earth.
--> SEDIMENTARY ROCKS: these rocks are usually formed from pre-existing rocks through the process of weathering (breaking down) of rocks.
--> IGNEOUS ROCKS: these rocks are formed when molten magma cools beneath or above the earth surface.
The actions that must have affected the igneous rock in order to form the sedimentary rock is that the igneous rocks are broken down into smaller pieces by erosion and weathering processes. Sediments which are formed accumulates at the earth surface. Over a long period of time, these sediments builds successive layers on top of one another. The sediments near the base hardens to form sedimentary rocks. This justifies the statement as a correct option (It must have been broken down into sediments).
Sodium is the reducing agent because a reducing agent is always the donor of electrons.
Answer:
Exothermic reaction: In exothermic reaction, energy is transferred to the surroundings, and the surrounding temperature increases, this is known as exothermic reaction. In other words energy exits in exothermic reaction. Some example of exothermic reactions are:
1) Neutralisation reaction.
2) Combustion reaction.
3) Some oxidation reaction.
Endothermic reaction: In endothermic reaction, energy is taken in from the surrounding, and the surrounding temperature decreases, this is known as endothermic reaction. In other words energy enters in endothermic reaction. Some example of exothermic reactions are:
1) Thermal decomposition.
2) Reaction between citric acid and sodium hydrogen carbonate.