1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anastasy [175]
2 years ago
12

3. Skunks run about 10 miles per hour and won't try to outrun a predator. Instead, they

Chemistry
1 answer:
Andrej [43]2 years ago
4 0

Answer:

heelpindgbsjdjfjfhjf d drrr¾rereerrrr. freee points

You might be interested in
Write the balanced equation for the reaction of aqueous Pb ( ClO 3 ) 2 with aqueous NaI . Include phases. chemical equation: Wha
Citrus2011 [14]

<u>Answer:</u> The mass of lead iodide produced is 9.22 grams

<u>Explanation:</u>

To calculate the molarity of solution, we use the equation:

\text{Molarity of the solution}=\frac{\text{Moles of solute}}{\text{Volume of solution (in L)}}

Molarity of NaI = 0.200 M

Volume of solution = 0.200 L

Putting values in above equation, we get:

0.200M=\frac{\text{Moles of NaI}}{0.200}\\\\\text{Moles of NaI}=(0.200mol/L\times 0.200L)=0.04moles

The chemical equation for the reaction of NaI and lead chlorate follows:

Pb(ClO_3)_2(aq.)+2NaI(aq.)\rightarrow PbI_2(s)+2NaClO_3(aq.)

By Stoichiometry of the reaction:

2 moles of NaI reacts produces 1 mole of lead iodide

So, 0.04 moles of NaI will react with = \frac{1}{2}\times 0.04=0.02mol of lead iodide

To calculate the number of moles, we use the equation:

\text{Number of moles}=\frac{\text{Given mass}}{\text{Molar mass}}

Molar mass of lead iodide = 461 g/mol

Moles of lead iodide= 0.02 moles

Putting values in above equation, we get:

0.02mol=\frac{\text{Mass of lead iodide}}{461g/mol}\\\\\text{Mass of lead iodide}=(0.02mol\times 461g/mol)=9.22g

Hence, the mass of lead iodide produced is 9.22 grams

6 0
3 years ago
Help ASAAPPPPPPPPPP!!!!
Verdich [7]
Third choice is correct. 
6 0
3 years ago
Suppose you have just added 100 ml of a solution containing 0.5 mol of acetic acid per liter to 400 ml of 0.5 m naoh. what is th
Tpy6a [65]

pH = 13.5

Explanation:

Sodium hydroxide completely ionizes in water to produce sodium ions and hydroxide ions. Hydroxide ions are in excess and neutralize all acetic acid added by the following ionic equation:

\text{HAc} + \text{OH}^{-} \to \text{Ac}^{-} + \text{H}_2\text{O}

The mixture would contain

  • 0.4 \times 0.5 - 0.1 \times 0.5 = 0.15 \; \text{mol} of \text{OH}^{-} and
  • 0.1 \times 0.5 = 0.05 \; \text{mol} of \text{Ac}^{-}

if \text{Ac}^{-} undergoes no hydrolysis; the solution is of volume 0.1 + 0.4 = 0.5 \; \text{L} after the mixing. The two species would thus be of concentration 0.30 \; \text{mol} \cdot \text{L}^{-1} and 0.10 \; \text{mol} \cdot \text{L}^{-1}, respectively.

Construct a RICE table for the hydrolysis of \text{Ac}^{-} under a basic aqueous environment (with a negligible hydronium concentration.)

\begin{array}{cccccccc} \text{R} & \text{Ac}^{-}(aq) &+ & \text{H}_2\text{O}(aq) & \leftrightharpoons & \text{HAc}(aq) & + & \text{OH}^{-} (aq)\\ \text{I} & 0.10 \; \text{M} & & & & & &0.30 \; \text{M}\\ \text{C} & -x \; \text{M}& & & & +x \; \text{M}& & +x \; \text{M} \\ \text{E} & (0.10 - x) \; \text{M} & & & & x \; \text{M} & & (0.30 +x) \; \text{M} \end{array}

The question supplied the <em>acid</em> dissociation constant pK_afor acetic acid \text{HAc}; however, calculating the hydrolysis equilibrium taking place in this basic mixture requires the <em>base</em> dissociation constant pK_b for its conjugate base, \text{Ac}^{-}. The following relationship relates the two quantities:

pK_{b} (\text{Ac}^{-}) = pK_{w} - pK_{a}( \text{HAc})

... where the water self-ionization constant pK_w \approx 14 under standard conditions. Thus pK_{b} (\text{Ac}^{-}) = 14 - 4.7 = 9.3. By the definition of pK_b:

[\text{HAc} (aq)] \cdot [\text{OH}^{-} (aq)] / [\text{Ac}^{-} (aq) ] = K_b =  10^{-pK_{b}}

x \cdot (0.3 + x) / (0.1 - x) = 10^{-9.3}

x = 1.67 \times 10^{-10} \; \text{M} \approx 0 \; \text{M}

[\text{OH}^{-}] = 0.30 +x \approx 0.30 \; \text{M}

pH = pK_{w} - pOH = 14 + \text{log}_{10}[\text{OH}^{-}] = 14 + \text{log}_{10}{0.30} = 13.5

6 0
3 years ago
Which of the following is NOT a characteristic of a compound?
MissTica

Answer:

I think it's D

sorry if I'm wrong.

Explanation:

4 0
3 years ago
What is the hydrogen ion concentration of a solution with a pH of 2.0?
aliina [53]

Answer:

Knowing others is intelligence; knowing yourself is true wisdom. mastering others is strength; mastering yourself is true power. if you realize that you have enough, you are truly rich, "And the cause of not following your heart, is in spending the rest of your life wishing you had."

Explanation:

I need points so SORRY!

8 0
3 years ago
Other questions:
  • If the half-reaction: Fe3+ + e- = Fe2+ were chosen as the standard reduction potential table reference instead of: 2H+ + 2e- = H
    10·1 answer
  • 4. Which is produced when a base reacts with water?
    7·2 answers
  • If the percent (mass/mass) for a solute is 8% and the mass of the solution is 200 g, what is the mass of solute in solution?
    11·2 answers
  • Molecules can be constructed by combining atoms of the same element. True or false?
    11·2 answers
  • Lab report on physical and chemical change
    7·1 answer
  • Match the following chemical reactions:
    14·1 answer
  • Ammonia and hydrogen fluoride both have unusually high boiling points due to
    13·1 answer
  • PLEASEEE HELP ?!?!?!
    6·2 answers
  • Happiness and Atoms<br><br> See picture. Answer questions. Thanks
    10·1 answer
  • What is the height on human
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!