Explanation:
Formula for calculating the area of a rectangle A = Length *width
For statement A;
Given area of a rectangle with measured length = 2.536 mm and width = 1.4 mm.
Area of the rectangle = 2.536mm * 1.4mm
Area of the rectangle = 3.5504mm²
The rule of significant figures states that we should always convert the answer to the least number of significant figure amount the given value in question. Since 1.4mm has 2 significant figure, hence we will convert our answer to 2 significant figure.
Area of the rectangle = 3.6mm² (to 2sf)
For statement B;
Given area of a rectangle with measured length = 2.536 mm and width = 1.41 mm.
Area of the rectangle = 2.536mm * 1.41mm
Area of the rectangle = 3.57576mm²
Similarly, Since 1.41mm has 3 significant figure compare to 2.536 that has 4sf, hence we will convert our answer to 3 significant figure.
Area of the rectangle = 3.58mm² (to 3sf)
Based on the conversion, it can be seen that 3.6mm² is greater than 3.58mm², hence the area of rectangle in statement A is greater than the area of the rectangle in statement B.
Answer:
Hold on Ill answer it..When do u need it by
Explanation:
E = hf
E = 6.63×10^-34 × 3.55×10 eV
1 eV = 1.60×10^-19 J
E = 6.63×10^-34 × 3.55×10 × 1.60×10^-19
E = 3.77×10^-51 J
Hope it helped!
Answer: 16N
Explanation:
Given that:
mass of box M= 2 kg
Initial speed V1 = 4 m/s
Final speed V2 = 8 m/s
Time taken T= 0.5 s
Average strength of this force F = ?
Now, recall that Force is the rate of change of momentum per unit time
i.e Force = momentum / time
Hence, F = M x (V2 - V1)/T
F = 2kg x (8 m/s - 4 m/s) / 0.5s
F = 2kg x (4 m/s / 0.5s)
F = 2kg x 8 m/s/s)
F = 16N
Thus, the average strength of this
force is 16 newton.
Explanation:
Area of ring 
Charge of on ring 
Charge on disk

![\begin{aligned}d v &=\frac{k d q}{\sqrt{x^{2}+a^{2}}} \\&=2 \pi-k \frac{a d a}{\sqrt{x^{2}+a^{2}}} \\v(1) &=2 \pi c k \int_{0}^{R} \frac{a d a}{\sqrt{x^{2}+a^{2}}} \cdot_{2 \varepsilon_{0}}^{2} R \\&=2 \pi \sigma k[\sqrt{x^{2}+a^{2}}]_{0}^{2} \\&=\frac{2 \pi \sigma}{4 \pi \varepsilon_{0}}[\sqrt{z^{2}+R^{2}}-(21)] \\&=\frac{\sigma}{2}(\sqrt{2^{2}+R^{2}}-2)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7Dd%20v%20%26%3D%5Cfrac%7Bk%20d%20q%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5C%26%3D2%20%5Cpi-k%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5C%5Cv%281%29%20%26%3D2%20%5Cpi%20c%20k%20%5Cint_%7B0%7D%5E%7BR%7D%20%5Cfrac%7Ba%20d%20a%7D%7B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%7D%20%5Ccdot_%7B2%20%5Cvarepsilon_%7B0%7D%7D%5E%7B2%7D%20R%20%5C%5C%26%3D2%20%5Cpi%20%5Csigma%20k%5B%5Csqrt%7Bx%5E%7B2%7D%2Ba%5E%7B2%7D%7D%5D_%7B0%7D%5E%7B2%7D%20%5C%5C%26%3D%5Cfrac%7B2%20%5Cpi%20%5Csigma%7D%7B4%20%5Cpi%20%5Cvarepsilon_%7B0%7D%7D%5B%5Csqrt%7Bz%5E%7B2%7D%2BR%5E%7B2%7D%7D-%2821%29%5D%20%5C%5C%26%3D%5Cfrac%7B%5Csigma%7D%7B2%7D%28%5Csqrt%7B2%5E%7B2%7D%2BR%5E%7B2%7D%7D-2%29%5Cend%7Baligned%7D)
Note: Refer the image attached