The density would decrease because the mass of an object deals with the amount of atoms in the object and since none of the object was reduced "a" wouldn't be the answer. Depending on the amount and period of time that the heat is applied the liquid could change into a gas so "d" wouldn't be correct. Density is the mass÷ volume, and when you add heat to an object it could take up different amounts of space because of its particles gaining energy and spreading apart. So the density would decrease because of the volume increasing. So I believe that "c" is the answer.
Answer: 500 N
Explanation:
The formula to find the force exerted by a mass, we may use F = mg, where g, the gravity, and a, the acceleration, can be interchangeable in the formula.
1) F = 50 x 10
2) F = 500 N
Hope this helps, brainliest would be appreciated :)
To solve this problem it is necessary to apply the concepts related to Normal Force, frictional force, kinematic equations of motion and Newton's second law.
From the kinematic equations of motion we know that the relationship of acceleration, velocity and distance is given by

Where,
Final velocity
Initial Velocity
a = Acceleration
x = Displacement
Acceleration can be expressed in terms of the drag coefficient by means of
Frictional Force
Force by Newton's second Law
Where,
m = mass
a= acceleration
Kinetic frictional coefficient
g = Gravity
Equating both equation we have that



Therefore,


Re-arrange to find x,

The distance traveled by the car depends on the coefficient of kinetic friction, acceleration due to gravity and initial velocity, therefore the three cars will stop at the same distance.
The change in temperature here corresponds to a sensible heat. The amount of energy required can be calculated by multiplying the specific heat capacity, the amount of the substance and the corresponding change in temperature.
Heat required = mCΔT
Heat required = 0.368 kg (0.0920 cal/g°C) (60 - 23)°C
Heat required = 1.25 cal