According to Newton's first law of motion, what happens to the ball is the ball rolls backward.
<h3>What is the first law?</h3>
This means that an object at rest or in motion will remain uniformly rectilinear and tend to be in that state if the net force on it is zero.
In this case, we have to think that the ball is at rest and the train is moving with a velocity that way, the reaction of the ball will be to go in the opposite direction to the motion.
See more about first law at brainly.com/question/3808473
#SPJ1
The answer to your question is OPTION B
29.213 cm3
First, calculate the mass of the water used. You do this by subtracting the original mass of the flask from the combined mass of the water and flask, giving:60.735 g - 31.601 g = 29.134 g
So we now know we have 29.134 g of water. To calculate the volume of the flask, simply divide by the density of the water, giving:29.134 g / (0.9973 g/cm3) = 29.213 cm3
When dealing with multiple forces acting on a body, it is advisable to draw a free-body diagram like that shown in the picture. There are four forces acting on the box: weight (W) pointing straight down, normal force perpendicular to the slope denoted as Fn, force used to push the box upwards along the slope and the frictional force acting opposite to the direction of motion of the box denoted as Ff. Frictional force is equal to coefficient of kinetic friction (μk) multiplied with Fn.
∑Fy = Fn - mgcos30° = 0
Fn = (50)(9.81)(cos 16) = 471.5 N
When in motion, the net force is equal to mass times acceleration according to Newton's 2nd Law of Motion:
Fnet = F - μk*Fn - mgsin30° = ma
250 - (0.2)(471.5 N) - (50)(sin 16°) = (50)(a)
a = 2.84 m/s²
Acceleration
Explanation:
Acceleration is a physical quantity that expresses the change in the velocity of a body per unit of time.
Acceleration = 
V is the initial velocity
U is the final velocity
T is the time
It is has a unit of m/s²
Learn more:
Acceleration brainly.com/question/3820012
#learnwithBrainly